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SUMMARY 

This paper presents a methodology for representing a large and complex 
computer program using graphics and Ada-based annotated pseudo code. It 
describes the application of the graphical representation, referred to as 
Structured Hierarchical Ada Representation using Pictographs (SHARP), in 
the design and test of computer programs, and presents a concept of 
operation for generating the grahics in a computer aided manner. The 
resulting tool is considered important, since design and test costs account 
for over 60% of software development costs. The tool also applies to 
software maintenance, which typically exceeds the original development cost" 
by more than 50%. 

BACKGROUND 

DoD has mandated the use of Ada in the implementation of mission-critical 
software. Standardizing to a single high-order language will contribute to 
Lower software life-cycle costs, since, for example, fewer compilers will 
have to be developed and the labor force will not be subdivided among 
several languages. Furthermore, it promotes the development of tools 
applicable to the entire software life cycle, since with one language a 
large market will exist for each tool. 

In addition, proponents of Ada expect that its technical features will also 
help reduce software development costs. For example, Ada packages can he 
used to encapsulate reusable software, for such things a hardware driver;, 
communication protocols, high and low level I/O, math functions and special 
purpose algorithms. The Ada packages and their contents can be maa 
general purpose through the Ada generics capability, whereby the name ol i 
program unit, and typically the definition of its types and the range ••' 
permissible values for passed parameters, are created during compilation. 
(The process of creating a particular instance of the generic program ur.i' 
is referred to as generic instantiation.) 

Another important technical feature of an Ada package is its information 
hiding capability. It can be used to provide the framework for the imple- 
mentation of object-oriented designs, as means for controlling dependency 
relationships between variables, types and program units. 

In the past, global parameters and routines were shared among many program 
units. If during development and maintenance any one of the global para- 
meters or routines were modified to correct an error, the change COMI'.I 

adversely affect many different parts of the computer program. When one 
error was corrected by a change, several others often were introduced. 
Seemingly innocent changes, at times, caused serious problems. However, by 
localizing design complexity using principles of object-oriented design, 
the effect of a change is trapped within the implementation of an objec; 
itself. 

Concept of an Object-Oriented Design 

With an object-oriented design, a large computer program is composed using 
multiple objects. Each object is a system component implemented : :i 
software using a set of operations unique to it and a local state defined 



in a data structure. The unique operations are known only to the internals 
of the object implementation. Object implementations typically are 
independent and interact with only one or two other object implementations. 

Object Implementations in Ada Packages 

With Ada, objects can be implemented in Ada packages, which act as contain 
ers of data structures and other Ada program units. Like other Ada program 
units, an Ada package consists of a specification and a body. The contents 
of the specification are visible to other program units, while the contents 
of the body are not accessible by program units external to the body. 
Therefore, using Ada packages the complexities of object implementations 
can be hidden in the package's body. 

Parameters passing between object implementations can be accomplished by 
communicating program units declared in the specification of the package. 
To the extent possible, the passed parameters should not include variables 
and flags used in the formulation of operations unique to the object 
implementation. In this way, coupling by parameters passed between objects 
can be avoided. If potentially coupling parameters are passed, with Ada 
they can be of private or limited private types. In this way, accessing 
program units have limited use of such passed parameters. 

COSTS OF SOFTWARE DEVELOPMENT 

The high cost of developing software constructed using coupled program 
units has proven to be the rule and not the exception. In addition, as we 
have already indicated, experience has shown the maintenance and improve- 
ment of such software over ten years or so, once it is put to use, may cost 
much more than the original development cost. 

Cost models have been formulated and calibrated to estimate the cost of 
such highly coupled software. For example, the Constructive Cost Model 
(COCOMO) projects the cost to develop this software as a function of its 
size, type of application and characteristics of the development process. 
Although existing cost models have not been formulated or calibrated for 
software developed in an object-oriented manner, they can be indirectly 
used to project the costs. Figure i shows possible costs when comparing 
the software developed in a traditional (highly coupled) manner to software 
developed in an object-oriented manner using Ada. 

The cost of software developed in a traditional manner was established by 
directly applying COCOMO. The cost of software developed in an object- 
oriented manner using Ada, was calculated using the following relationship: 

(Cost) - (Design Cost) + (Object Implementation Cost) 
+ (Object Implementation Integration Cost) 

The design cost was established with COCOMO by assuming the cost to estab- 
lish a traditional design is essentially equivalent to the cost to estab- 
lish an object-oriented design.* The object implementation cost was 
established by summing the cost to develop each object separately. 

* Design costs for both traditional and object-oriented designs would 
decrease significantly with an automated SHARP system, which is described 
in Chapter IX. These savings, however, cannot be quantified at this time 
and have not been considered in Figure i. 
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The integration of object implementations is not accounted for by COCOMO. 
However, as a lower limit, this effort could be assumed to cost about tho 
same as the cost to integrate an equal number of program units, since 
loosely coupled interfaces between object implementations should not be 
more complicated than typical program unit interfaces. The accuracy of 
this assumption decreases as the extent of coupling between the implementa- 
tions increases. In the limit, the cost to develop strongly coupled 
objects approaches the cost to develop software in a traditional manner, 
where strong dependency relationships drive costs. 

Although we can argue where between the limits the expected cost of object- 
oriented development using Ada should lie, most will agree that with 
respect to computer programs, "bulk is bad". Using object-oriented design 
principles, a "bulky" computer program can be developed as a set of 
relatively small object implementations rather than one large computer 
program with highly coupled routines. Each object can be developed 
independently in a cost effective manner, and then integrated with other 
object implementations. 

As COCOMO and other cost models indicate, development costs increase more 
than linearly with the size of a computer program. We feel this is in 
large part, due to the increase in complex dependencies between variables, 
types and program units. Thus, by using relatively small object implementa- 
tions and constraining their interaction, software development costs 
decrease. 

This is especially relevant to extremely large computer software systems 
like those needed for the Strategic Defense Initiative, projected to 
consist of up to 50 million lines of source code. The complexity of depen- 
dency relationships for such large software systems will drive software 
costs very high, unless effectively controlled. 

GRAPHICAL ABSTRACTION OF SOFTWARE DESIGNS 

When written in accordance with effective style guidelines, most feel a 
computer program written in Ada is locally readable to those familiar with 
the Ada language. If we examine a fragment of Ada code, we can realize the 
design of that fragment. However, readable software means more than this. 
We must be able to easily understand the relationship of the fragment to 
the whole. 

In the past, hierarchical block diagrams have been used to represent the 
interrelationship between program units. However, conventional hierarchi- 
cal block diagrams are not adequate with Ada since they do not distinguish 
between the different kinds of Ada program units; they do not represent 
concurrent program unit execution that takes place in Ada; and they do not 
provide a mechanism for representing the unique capabilities of Ada to 
partition a large and complex computer program into understandable parts 
using object-oriented techniques. 

Recognizing this problem, R.J.A. Buhr of Carleton University, Ottawa, 
Canada, has suggested the need for "blue-prints" of computer programs to be 
implemented in Ada.  Although he concedes such software blueprints may not 



be necessary during the development of small computer programs, Buhr argues 
that they are needed to effectively represent the structure of a large and 
complex computer program. 

To illustrate this point, contrast the difference in design efforts under- 
taken by architects, who design large buildings, to home handymen, who may 
add a room to their home. The home handyman can proceed with minimal 
design information, making fragmented design decisions as he proceeds. A 
large architectural construction project, on the other hand, utilizes blue- 
prints and other design documentation. The construction of a building is 
undertaken by many people who divide the construction project into a set of 
manageable parts and communicate using blueprints. 

In the same manner, small software efforts undertaken by one or two people 
can proceed without partitioning or design structure information. However, 
as in construction, a plateau of project size and complexity is reached in 
software where it is not cost effective to proceed without explicit manage- 
able parts and blueprints that represent the manageable parts. 

The Need for Graphical Abstracts 

We suggest that levels of abstracts are needed to represent the design of 
large and complex computer programs to be developed in a traditional or 
object-oriented manner and implemented using Ada. The abstracts can be 
pictorial representations of the design that comprise or concentrate 
within themselves the essential qualities of specific aspects of the 
design. Such abstracts, if readily readable, can help close the gap In 
communication between different members of a software development team. 
Such communication is critical to cost effective implementation of large 
and complex software systems. 

In practice, pictorial abstracts are beneficial to both government and 
contractor personnel. In preparation for a software acquisition, the 
graphical presentation of large and complex Ada software helps instructors 
teach Ada in the context of the overall software system. During the 
acquisition of Ada software, contractor managers needs Ada abstracts to 
intellectually grasp the problem they must manage. A programmer can use 
Ada abstracts to help understand what it is that he must implement and 
communicate to a designer expansions or modifications he has introduced 
into the design. 

Government reviewers need Ada abstracts to understand the design that they 
must ultimately approve. Review of many thousands of lines of pseudo-code 
or source code in a short period of time is often very difficult, if not 
impossible. In contrast, review of levels of the design provided in 
different pictorial abstracts is relatively easy. 

Software engineers need abstracts to help present designs at design reviews 
and within design documentation. In this way, among other things, the 
consistency of variables passed between object implementations can be 
reviewed. 

In the past, compilers did not check the consistency of variable and other 
declarations made in various parts  of a computer program.   Accordingly, a 



program would compile easily and a unit test could quickly be initiated. 
Of course, problems associated with declaration inconsistencies had to be 
resolved as part of the testing process. 

With Ada, compilers and linkers check the consistency of declarations. For 
example, the input/output parameters of a program unit must have their type 
(e.g., integer or floating point) defined, and checked at compilation and 
linking time. The consistency of these definitions are checked by matching 
the type definitions in the specification of a calling program unit to the 
type definitions in the specification of the called program unit. 

Ada-unique diagrams and pictorial abstracts are needed to establish depen- 
dency relationships between object implementations used to establish a 
large Ada computer program. Failure to establish correct dependency 
relationships between the implementations will result in several time 
consuming compilation iterations during the integration of object implemen- 
tations. Although incremental compilation is possible with Ada, all 
dependent pieces of a computer program must be recompiled at the same time. 
Thus, recompilation can be a significant effort. 

The whole problem, of course, is magnified as the size of the Ada computer 
program grows. Such growth is possible today because of the capacity 
available in processing hardware. Today, technology offers potentially 
unlimited processing power and memory, thus, more and more complex applica- 
tions are being undertaken. 

Levels of Abstracts 

Recognizing the need for graphical abstracts applicable to representing the 
design of computer programs, we have defined a set of Ada-unique abstracts 
that are applicable to both traditional and object-oriented Ada-unique 
designs. The graphical abstraction system is referred to as SHARP (Struc- 
tured Hierarchical Ada Representation using Pictographs). It provides a 
notation that can be used to represent extremes in combinations of Ada pro- 
gram units, variables and types that a designer may choose, regardless of 
whether an object-oriented or more traditional design approach is being 
taken. 

The graphics utilize pictographs to represent Ada program units. Specifi- 
cally, a square is used to represent a subprogram, a parallelogram to 
represent a task and a rectangle to represent a package. In each case, the 
geometric figure is divided by a horizontal line into two parts, a narrow 
part representing the program unit's specification, and a wide part 
representing its body. The pictographs can be interconnected to represent 
the main program and its interface with external entities. For example, 
consider the diagram shown in Figure ii. In this diagram, the tasks shown 
are responsible for servicing a communication link, a terminal, a work 
station and an interfacing microprocessor. The small rectangle labeled PI 
indicates a package utilized by the main program, made available through 
the Ada "with" clause. 

The pictographs can be used to establish various other graphical options to 
represent the design of the program units declared in procedure MAIN. At a 
high level, graphical options can be used to represent Ada packages, which 
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can be used to encapsulate object implementations in the manner shown in 
Figure iii, where generic reusable software is represented by dashed lines. 
Such object implementations interact through communicating Ada program 
units visible in the package specification, as represented in the invoca- 
tion abstract shown in Figure iv. 

At an intermediate level, graphical options can be used to represent 
program units used to implement the internal complexities of an object 
implementation. Specifically as illustrated in Figure v, the structure of 
nested program units within a program unit declared in the specification of 
a package can be represented using a Hierarchy Diagram. The sequential set 
of subprogram calls within this program unit and the concurrent execution 
of Ada tasks within it can be represented using an Invocation Diagram. 

At a yet lower level of design abstraction, options can be used to repre- 
sent selective detail. As illustrated in Figure vi, these abstracts can be 
thought of as "blow ups" of entities identified in invocation diagrams. 
Abstracted detail of data flow between subprograms can be shown in a 
Subprogram Data Flow Diagram. Abstracted detail for task rendezvous can be 
shown in a Task Rendezvous Diagram. The visibility of type, constant and 
variable declarations can be shown in a Data Structure Diagram. 

At the lowest level of abstraction, annotated pseudo code can be used to 
represent the bodies of each Ada program unit, as also illustrated in 
Figure vi. For each body, the pseudo code accounts for such things as 
logic, decisions, algorithms, program unit calls, input/output, generic 
instantiation and exceptions. 

COMPUTER-AIDED SOFTWARE DEVELOPMENT 

In order to implement large and complex computer programs in a cost effec- 
tive manner, technological advancements in software development are neces- 
sary. Knowledge-aided design (KAD) systems that have been automated for 
Ada would undoubtedly significantly help reduce software development and 
maintenance costs. With them, software designers can rapidly generate 
abstracted design representations. The abstracts can be reviewed and the 
design representation iterated in order to, in some sense, optimize the 
design. Knowledge built into the KAD system helps inexperienced designers 
without extensive knowledge of Ada and object-oriented techniques. In this 
way, typical inefficiencies in design development and representation can be 
kept to a minimum. 

Upon system turnover to users, the automatically generated graphical 
abstracts can be used to support software maintenance. The maintainer will 
be able to selectively produce abstracts that, in a systematic manner, zero 
in at the touch of a terminal key on parts of the program he must modify. 

The abstracts will make the complexities of the design readily apparent, as 
opposed to culling thousands of statements in a a source code listing. The 
exclusive use of source code to maintain a large and complex computer pro- 
gram has proven to be very expensive, as we have already indicated. Such a 
KAD system could be developed as the first phase in the automation of 
SHARP, as illustrated by Item a of Figure vii. 
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In addition to being used to establish design abstracts, the design know- 
ledge base established by a user of a KAD system can also be mapped into 
Ada source code. The code would encompass aspects of the design directly 
accounted for in the design abstracts. This code could, in turn, be 
expanded and refined by a programmer using a syntax directed editor. Such 
an automatic programming capability could be developed as the second phase 
in the automation of SHARP, as illustrated by Item b of Figure vii. 

Furthermore, the design knowledge base could also be mapped into a size 
metric. The size metric, along with user inputs on the attributes of the 
software acquisition, could be used as inputs to a cost estimation algo- 
rithm that projects the cost to build the large and complex computer 
program. In this way, the cost estimation problem is merged with the 
automated design process so that meaningful estimates can be made. Such a 
cost estimation capability could be developed as the third phase in the 
automation of SHARP, as illustrated by Item c of Figure vii. 

Applying such a computer-aided software engineering tool in conjunction 
with object-oriented designs, is needed to help effectively acquire 
software and reduce software development and maintenance costs. The 
automated SHARP (AUTOSHARP) system is especially applicable to the 
development of large software systems like those required for the Strategic 
Defense Initiative. We feel the development and transfer of such tech- 
nology into use will bring significant improvement in software productivity. 
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PART ONE:  DEFINITION OF SHARP 

CHAPTER I 

BASIC FEATURES OF SHARP 

This chapter introduces Structured Hierarchical Ada Representation using 
Pictographs (SHARP). It describes the need for SHARP and the beneficiaries 
of SHARP. It establishes pictographs that can be used to represent Ada 
program units and describes the use of the pictographs to graphically 
represent the structure of an Ada computer program at a high level. 

This chapter is very basic in nature and is meant as an introduction to 
those unfamiliar with the Ada language. 

1    INTRODUCTION 

1.1 WHAT SHARP IS 

SHARP is defined by a criteria for establishing pictorial abstracts of a 
large and complex computer program to be programmed using the DoD high 
order language Ada (ANSI/MIL-STD 1815A). Standards of the criteria dictate 
how to establish selective pictorial options, encompassing Ada unique 
versions of high and intermediate level abstracts for Ada packages, program 
unit hierarchy and program unit invocation. In addition, the pictorial 
options can be used to establish low level abstracts for Ada task 
rendezvous, data declarations and data flow between Ada subprograms. At 
the lowest level, options utilize annotated pseudo code to represent 
computer program logic and operations on variables. At this lowest level. 
SHARP junctions with design presentations that utilize Ada-based program 
design language. 

The abstracts apply to traditional design approaches as well as object- 
oriented. The object-oriented approach is emphasized since it is the 
approach expected to be widely used in the development of large and complex 
Ada computer programs. 

1.2 BACKGROUND 

1.2.1  Projections for Software Acquisition Costs 

The performance of defense systems has become increasingly dependent upon 
embedded computers. The development of software needed to program the 
embedded computers currently incurs a significant cost during system 
acquisition. 

* In terminology of SHARP, an abstract is a pictorial representation that 
comprises or concentrates in itself the essential qualities of specific 
aspects of an Ada computer program (e.g., rendezvous between tasks or 
data flow between subprograms); synonym - pictorial compendium. 
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The acquisition of a single defense system can include the development of 
computer programs consisting of more than 600,000 instructions. Presently, 
software development costs during one system acquisition can exceed 60 
million dollars. Moreover, the operation, maintenance, and continued 
improvement of the software over 10 years or so once a system is put to use 
can cost as much as 50 times the software development cost. 

An industry team, under the guidance of the Electronic Industries 
Association, has projected that by 1990 overall annual DoD software costs 
will reach 32 billion dollars, while annual hardware costs will reach only 
6 billion dollars. 

Since annual software costs have been projected to cost more than six times 
annual hardware acquisition costs by 1990, DoD has recognized the need to 
develop and implement capabilities that will reduce software acquisition 
and maintenance costs. Accordingly, as one step in controlling these costs, 
DoD has sponsored the development of Ada. 

1.2.2 The Evolution of Ada 

The military services, U.S. industry, and our NATO allies were intimately 
involved in the definition of requirements for Ada. During 1975 and 1976, 
preliminary requirements for Ada were distributed to a large audience for 
comment.  In June 1976, a complete set of Ada requirements were published. 

DoD used two criteria when establishing the requirements. First, Ada had 
to be a high quality product. Second, Ada was meant to accrue foreign 
acceptance and domestic acceptance outside the defense industry. 

With this in mind, DoD released an international request for proposal 
(RFP), asking for a preliminary design of the Ada language. Four contrac- 
tors were selected from those responding to the RFP for the preliminary 
design.  They were Softech, Intermetrics, SRI International, and Honeywell. 

Upon completion, the preliminary designs were distributed for comment. 
Eighty formal evaluation reports were received, having been submitted by 
DoD organizations, U.S. and European industry, plus the Ministries of 
Defense of the United Kingdom, France, and Germany. In April 1978 and in 
April 1979, public hearings were held to give software engineers throughout 
the world an opportunity to gain an understanding of the rationale for 
design decisions. 

After extensive review, the Honeywell design was chosen. In 1983, the 
formal definition of the Ada language was standardized as ANSI/MIL-STD 
1815A. 

1.2.3 The Need for SHARP 

When written in accordance with effective style guidelines, most feel a 
computer program written in Ada is locally readable to those familiar with 
the Ada language. If we examine a fragment of Ada code, we can realize the 
design of that fragment. However, readable software means more than this. 
We must be able to easily understand the relationship of the fragment to 
the whole. 
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In the past, hierarchical block diagrams have been used to represent the 
interrelationship between program units. However, conventional hierarchi- 
cal block diagrams are not adequate with Ada since they do not distinguish 
between the different kinds of Ada program units; they do not represent 
concurrent program unit execution that takes place in Ada; and they do not 
provide a mechanism for representing the unique capabilities of Ada to 
partition a large and complex computer program into understandable parts 
using object-oriented techniques. 

Recognizing this problem, R.J.A. Buhr of Carletcoi University, Ottawa, 
Canada, suggests in his book System Design with Ada the need for "blue- 
prints" of computer programs to be implemented in Ada. Although he concedes 
such software blueprints may not be necessary during the development of 
small computer programs, Buhr argues that they are needed to effectively 
represent the structure of a large and complex computer program. 

To illustrate this point, contrast the difference in design efforts under- 
taken by architects, who design large buildings, to home handymen, who may 
add a room to their home. The home handyman can proceed with minimal 
design information, making fragmented design decisions as he proceeds. A 
large architectural construction project, on the other hand, utilizes 
blueprints and other design documentation. The construction of a building 
is undertaken by many people who divide the construction project into a set 
of manageable parts and communicate using blueprints, which present design 
information in a series of pictorial abstracts. 

In the same manner, small software efforts undertaken by one or two people 
can proceed without partitioning or design structure information. However, 
as in construction, a plateau of project size and complexity is reached in 
software where it is not cost effective to proceed without explicit: 
manageable parts and blueprints that represent the manageable parts. 

1.2.4  Beneficiaries of SHARP 

Pictorial abstracts of SHARP are beneficial to both government and contrac- 
tor personnel. In preparation for a software acquisition, the graphical 
presentation of large and complex Ada software will help instructors teach 
Ada in the context of the overall software system. Specifically, it will 
help the instructor explain the notions of design abstraction and informa- 
tion hiding in conjunction with object-oriented or other design techniques; 
and how such designs are facilitated with Ada. 

During the acquisition of Ada software, contractor and government personnel 
need Ada abstracts. Contractor managers need Ada abstracts to intellectu- 
ally grasp the problem they must manage. Experience has shown that 
misunderstood projects will most likely go astray. Initial budgets tend to 
be insufficient and resource allocation during the course of the project 
may not be appropriate. 

A programmer can use Ada abstracts to help understand what it is that he- 
must implement. Also, the programmer needs a mechanism for communicating 
back to a designer expansions or modifications he has introduced into the 
design. 
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Government reviewers need Ada abstracts to understand the design that they 
must ultimately approve. Review of many thousands of lines of pseudo code 
or source code in a short period of time is often very difficult, if not 
impossible. In contrast, review of levels of the design provided in 
different pictorial abstracts will be relatively easy. 

Later in the software life cycle, SHARP would also help the government in 
the maintenance of large Ada computer programs. With SHARP automated 
within a workstation, maintainers will be able to selectively produce Ada 
abstracts that zero in, at the touch of a terminal key, on the parts of a 
computer program that must be modified. The maintainer's learning curve 
will be faster with understandable abstracts complementing documentation 
and Ada source code. 

Software Engineers need abstracts to present designs prepared using object- 
oriented design techniques, which can be uniquely implemented using Ada. 
For example, Ada abstracts are needed to present such designs taking into 
account mechanisms in Ada for (a) layers of packages, (b) levels of other 
program units and (c) hiding information within the packages and other 
program units. These Ada mechanisms are especially important because of 
the criticality of controlling complicated dependency relationships 
possible in large, complex computer programs. 

In the past, compilers did not check the consistency of variable and other 
declarations made in various parts of a computer program. Accordingly, a 
program would compile easily and a unit test could quickly be initiated. 
Of course, problems associated with declaration inconsistencies had to be 
resolved as part of the testing process. 

With Ada, compilers and linkers check the consistency of declarations. For 
example, the input/output parameters of a program unit must have their type 
(e.g., integer or floating point) defined, and checked at compilation and 
linking time. The consistency of these definitions are checked by matching 
the type definitions in the specification of a calling program unit to the 
type definitions in the specification of the called program unit. 

Ada-unique diagrams and pictorial abstracts are needed to establish 
dependency relationships in a large Ada computer program. Failure to 
establish correct dependency relationships will result in several time 
consuming compilation iterations. Although incremental compilation is 
possible with Ada, all dependent pieces of a computer program must be 
recompiled at the same time. Thus, recompilation can be a significant 
effort. 

The whole problem, of course, is magnified as the size of the Ada computer 
program grows. Such growth is possible today because of the capacity 
available in processing hardware. Today, technology offers potentially 
unlimited processing power and memory, thus, more and more complex 
applications are being undertaken. 

1.3  CHAPTER SCOPE 

In this chapter, pictographs are defined to represent Ada program units and 
the interconnection of the pictographs is described in the representation 
of the high level design of an Ada computer program. 
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Section 2 describes Ada program units and comments on their use as the 
building blocks of an Ada computer program. It introduces the pictographs 
established by SHARP to graphically represent the Ada program units. 
Section 3 discusses utilizing Ada program units to establish the upper 
levels of a design for an Ada computer program. Section 4 states 
conclusions. 

2    PICTOGRAPHS 

The basic building blocks of an Ada computer program are the program units 
called subprograms, tasks, and packages. As suggested by Buhr, we can 
compare the use of these building blocks in the implementation of Ada 
computer programs to the implementation of electronic hardware. Hardware 
components are connected together using cables, plugs and sockets, all with 
well defined interface characteristics. Several of the hardware components 
can operate concurrently. Correspondingly, Ada can be conceptually thought 
of as program units connected together with well defined interfaces and 
with several of the program units operating concurrently. 

This section provides an overview of the Ada program units and establishes 
pictographs that can be used to graphically represent them. 

2.1  REPRESENTATION OF AN ADA SUBPROGRAM 

2.1.1 Ada Subprogram Overview 

As a basic building block of an Ada computer program, an Ada subprogram can 
be used to encapsulate a set of logically related operations on variables, 
data manipulations and other processing. This permits dividing sequential 
processing into manageable pieces. There are two kinds of subprograms -- 
procedures and functions. 

The main program in Ada is an Ada procedure that is invoked upon activation 
of the Ada computer program. In addition, Ada procedures are nested within 
other Ada program units and invoked through a procedure call statement. 

Ada functions are also nested within other Ada program units. However, in 
contrast to a procedure, a call to a function is embedded in an expression. 
Therefore, a function is invoked upon execution of an expression. 

A subprogram consists of a specification and a body. The specification is 
a single Ada source instruction that establishes the name of the subprogram 
and the characteristics of its parameter passing. 

The body implements processing to be undertaken upon execution. It con- 
sists of multiple Ada source instructions, which are clearly distinguish- 
able from the specification. 

2.1.2 Ada Subprogram Pictograph 

SHARP utilizes a square to represent an Ada subprogram. The square is 
divided into a small narrow rectangle representing the subprogram's 
specification and a large rectangle representing its body, as illustrated 
in Figure 1. 
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FIGURE 1.    PICTOGRAPH FOR AIM ADA SUBPROGRAM 

2.2  REPRESENTATION OF AN ADA TASK 

2.2.1  Ada Task Overview 

Ada (asks are the building blocks of an Ada computer program that execute 
concurrently. Within a single processor, an Ada task operates in parallel 
with other Ada tasks in the time-slice sense of the word under control of 
an Ada run-time environment. 

Ada tasks can be nested within the main program of an Ada computer program 
to account for all processing to be undertaken concurrently by that 
computer program. Ada tasks are also used to service interrupts, implement 
action queues, and implement other concurrent operations. 

An Ada task consists of a specification and a body, in a manner similar to 
an Ada procedure. In contrast to the specification of a procedure which is 
a single Ada statement, the specification of a task consists of one or more 
Ada source statements that establish the name of the task and describe the 
characteristics of inter-task communication. Also, in contrast with 
procedures which are invoked upon request by a caller, task interaction is 
consummated by the callee (or acceptor) rather than the caller. The word 
"rendezvous" is used to describe such task interaction. 

The body of a task implements processing to be undertaken upon execution. 
As is the case of a procedure, the body consists of multiple Ada source 
statements, which are clearly distinguishable from the specification. 
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2.2.2 Ada Task Pictograph 

SHARP utilizes a parallelogram to represent an Ada task The parallelogram 
is divided into a small narrow parallelogram represent lug it :; specifieal ton 
and a large parallelogram representing its body, as illustrated in Figure 2. 

FIGURE 2. PICTOGRAPH FOR AN ADA TASK 

2.3  REPRESENTATION OF AN ADA PACKAGE 

2.3.1 Ada Package Overview 

An Ada package is the program unit that acts as a container for other 
program units, data and data type declarations. An Ada package has its own 
specification and body. The specification consists of one or more instruc- 
tions. It is used to identify the name of the package. It is also used to 
establish the identity of program units it contains that can be called by 
program units external to the package. The package specification may also 
include data and data type definitions that are accessible by other Ada 
program units. 

The body of an Ada package contains the bodies of the program units 
declared in the specification. It also may contain data, data types plus 
specifications and bodies of program units that cannot be directly accessed 
by program units external to the package. The latter capability is basic 
to the implementation of object-oriented software designs with Ada. In 
this context, packages are used to encapsulate the implementation of 
objects, as discussed in subsequent chapters. Packages also serve as a 
mechanism for encompassing common program units and off-the-shelf reusable 
modules. 

2.3.2 Ada Package Pictograph 

SHARP utilizes a rectangle to represent an Ada package. The rectangle is 
divided into a small narrow rectangle representing the package's specifica- 
tion and a large rectangle representing its body, as illustrated in item a 
of Figure 3. 



The specification of accessible program units within an Ada package are 
shown within the package's specification. The bodies of these program 
units program unit are shown within the package's body, as shown in item b 
of Figure 3. Ada program units hidden in the package's body and not 
accessible to program units external to the package, are not shown. Tho 
presence of variables, constants and type declarations are represented by 
rectangles enclosing slanted lines, as shown in item c of Figure 3. 

3   APPLICATION OF THE PICTOGRAPHS 

The designer of a large and complex computer program to be implemented in 
Ada, as an initial step in the design process, typically establishes 
concurrent processing threads or processes. With Ada, each process is 
established by a task declared in the main program. The representation of 
this level of an Ada design is discussed in this section. 

3.1  PROCESSES 

In a computer system, resident software typically has to satisfy multiple 
demands. For example, user commands and communication interface requests 
may simultaneously compete for a computer's processing time. A computer 
program must respond in a timely manner to the commands and requests, even 
when they are received at about the same instant in time. 

A chain of modules can be written to implement the operations on variables, 
data manipulation, logic, exceptions and other processing needed to respond 
to each user command and communication interface request. In addition, 
chains of modules may have to be written to automatically initiate process- 
ing within a computer program on a periodic or some other basis. For 
example, a software built-in-test of equipment may be periodically initia- 
ted or processing may automatically consummate when a sensor value reaches 
a critical value. 

For high order languages like FORTRAN, these threads are typically referred 
to as processes that can be concurrently executed directly under operating 
system control (in a time slice manner), thus providing the timely response 
needed. In Ada, the concurrent execution can be accomplished using Ada 
tasks. 

As a general rule, characteristics of processes include the following: 

• Processes account for logic, operations on variables, data 
manipulation and other processing needed to (a) satisfy user 
commands and communication interface requests and (b) 
perform processing automatically initiated on a periodic or 
some other basis. 

• Processes are loosely coupled. 

• Processes can execute concurrently if necessary. 
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(a)    BASIC PICTOGRAPH FOR AN ADA PACKAGE 

(b)     REPRESENTING ACCESSIBLE ADA SUBPROGRAMS AND TASKS 

(c)     REPRESENTING DATA STRUCTURES IN AN ADA PACKAGE 

FIGURE 3.    PICTOGRAPHS FOR ADA PACKAGES 
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3.2  REPRESENTATION OF THE HIGH LEVEL STRUCTURE OF AN ADA COMPUTER PROGRAM 

WLt.li AIIJI , the Implementation of processes can be accomplished using A<li 
tasks declared in the main program, as well as directly with the operating 
system. Each task can implement the requirements assigned to a specific 
process. This approach facilitates greater portability of the Ada computer 
program and does not necessitate knowledge of operating system configura- 
tion to establish processes. However, it may not be as memory and time 
efficient as directly using the operating system. 

The set of Ada tasks can be graphically represented using the pictographs 
of SHARP. For example, Figure 4 shows Ada tasks declared in the main 
program to service communication links, multiple terminals, work stations 
and an interfacing microprocessor. In the diagram, straight lines are 
drawn from the body of the main program to the specifications of process 
tasks, and dotted lines are drawn from the tasks to a geometric figure 
introduced to represent the external entity the task must interact with. 

The diagram also represents main program access to an Ada package through 
the Ada "with" clause. In Figure 4, the main program access to package 
TEXT_IO is represented by a small rectangle with a line drawn from it to 
the specification of the main program. 

Furthermore, the diagram indicates subprograms nested in the body of 
procedure MAIN. The designer might want to use procedures, for example, to 
establish initial conditions at the start of execution of the large Ada 
computer program; and to establish restart conditions. 
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CHAPTER II 

ADVANCED FEATURES OF SHARP 

This chapter describes a graphical technique for presenting the object 
oriented design of large and complex computer programs to be implemented 
using Ada. The graphics present abstracts (i.e., pictorial overviews) of 
Ada computer programs, each of which applies to a different level of 
design. At the highest level, the abstracts represent Ada packages that 
may be used to encapsulate major partitions of a large Ada computer 
program. These abstracts potentially account for large amounts of code, 
possibly 10,000 source statements or more. 

At an intermediate level, the abstracts can be used to represent the 
hierarchy and invocation of program units nested, for example, within a 
program unit declared in the specification of a package. The hierarchy 
diagram represents levels of nested program units and an invocation diagram 
represents concurrent processing with Ada tasks as well as sequential calls 
to multiple subprograms. These abstracts may account for as many as 5,000 
source statements. 

At a lower level, abstracts can be used to represent design detail. These 
abstracts can be envisioned as "blow ups" of entities identified in an 
invocation diagram. The abstracts represent details associated with task 
rendezvous, data flow between program units and data structures. At the 
lowest level, annotated pseudo code is used to represent operations, logic, 
input/output, generic instantiation and exception handling within the body 
of a program unit. 

The SHARP abstracts can be used to pictorially represent all extremes of an 
Ada design. They can be generated using a software graphic package. In 
this way, we can generate Ada abstracts in a timely manner and easily 
iterate them to update or optimize an Ada design. 

1    INTRODUCTION 

1.1  SOME IMPORTANT FEATURES OF ADA 

Ada provides a complete set of general purpose language features. As a 
programming language, Ada requires that both algorithms and data structures 
are specified precisely, and that the consistency in the use of variable 
types is verified by a compiler. Ada facilitates the construction of very 
large programs by providing extensive facilities for program unit modulari- 
zation. 

As a basic and important capability, Ada provides a framework for the 
construction of large programs using object-oriented design techniques, 
principally due to its capability to hide information in a set of Ada 
packages. Each package can be used to encapsulate a data structure local 
to one or more objects and operations unique to the objects. 
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A package consists of two parts - a specification and a body.  Only 
entities contained within the package's specification can be accessed by 
program units external to it.  The body of a package is used to implement 
complex operations on variables, logic and manipulation of data unique to 
the objects contained in the package. 

A package thus allows controlled access to the results of complex and 
potentially lengthy programming operations and logic. As such, it provides 
a powerful mechanism for program modularization. A large computer program 
(e.g., 600,000 lines of code) can be composed with a set of packages, each 
with a controlled interface to other packages. In this way, potentially 
devastating dependency relationships across the large computer program can 
be controlled by careful design of package interfaces. 

The development of each package itself may be a very complex and difficult 
job. Ada provides facilities to implement the bodies of program units 
declared in the specifications of packages, in accordance with the princi- 
ples of software abstraction and information hiding. 

As an example of software abstraction,  a small and easily understood 
portion of the program unit  is  implemented at one level,  while  the 
implementation of the rest of the computer program is deferred to other 
levels through calls to Ada subprograms and activation of Ada tasks. At 
each of the other levels, the process is repeated. 

1.2  PROGRAM DESIGN LANGUAGE 

As discussed in subsequent chapters, designers of large and complex Ada 
computer programs can establish a set of packages to encompass its major 
parts, must carefully design each package interface so as to constrain 
potentially complex dependency relationships, and can design the internals 
of each package in an abstracted manner. Aspects of the computer program's 
design can be presented using Ada code (or a subset or superset of Ada 
code). For example, Ada code for high level program units and their 
specifications have been referred to as Ada Program Design language (PDL). 
However, Ada-based PDL may be difficult to read by those not familiar with 
typing and and other aspects of the Ada language. As stated in the docu- 
ment Program Manager's Guide to Ada 3 : 

'Program managers. hardware designers. and communications 
engineers who are unfamiliar with PDL may find it difficult to 
review design documentation that consists largely of PDL." 

In addition, some feel that Ada-based PDL by itself is not sufficient to 
represent the design of a large and complex computer program. When written 
in accordance with effective style guidelines, most feel a computer program 
written in Ada is locally readable (to those familiar with the Ada lan- 
guage). If we examine a fragment of Ada code, we can realize the design of 
that fragment. SHARP agrees and, in fact, utilizes annotated pseudo code 
similar to Ada code (i.e., a form of PDL) to present the design of opera- 
tions on variables, logic and other processing within the bodies of sub- 
programs and tasks. However, this utilization of Ada-based pseudo code is 
only employed at the very lowest level of SHARP design abstraction. As 
stated in the Program Manager's Guide to Ada: 
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"PDL does not totally bridge the gap between the system level 
specification and the coded program. The top level software 
system design must be expressed." 

Futhermore, Ada-based PDL for a computer program written in Ada may, in 
essence, be nothing more than a first "cut" at the final Ada code itself. 
As stated in the Program Manager's Guide to Ada: 

"If the implementation language and the PDL are the same (i.e., 
full Ada), programmers will tend to begin coding before the 
design is complete and verified." 

Clearly, higher level abstracts are needed to present the set of packages 
used to compose a large Ada computer program. Abstracts are also needed to 
present the design of each package body. These abstracts must represent 
only essential aspects of Ada at a much higher level than that provided by 
PDL. The pictorial notation of SHARP can be used to establish such high 
level abstracts in a concise manner. 

SHARP was developed recognizing that lower level abstracts are also needed, 
when a design reaches maturity and a programmer can become involved in the 
implementation of the design. Accordingly, SHARP provides lower level 
abstracts to represent such things as task rendezvous, data flow between 
subprograms, generics, and the visibility of information in data 
structures. However, each of these abstracts is at a substantially higher 
level than PDL. 

1.3  CHAPTER SCOPE 

Section 2 describes the selective pictorial abstracts of SHARP. Section 3 
provides generic examples of the use of SHARP, in the context of a designer 
presenting an Ada software design prepared in an abstracted manner. 

2   LEVELS OF SHARP ABSTRACTS 

2.1  INTRODUCTION 

As discussed in Chapter I, Ada facilitates the implementation of real-time 
computer programs embedded within weapon systems. As such, Ada computer 
programs must respond in a timely manner to independent commands, even when 
they are received at about the same instant in time. Ada tasks can be 
declared within the main program to service each command concurrently, 
under control of an Ada run-time environment. 

Chapter I introduces graphical representation of the main program and its 
interface with external entities, as shown in Figure 4. In this diagram, 
the tasks shown are responsible for servicing a communication link, a 
terminal, a work station and an interfacing microprocessor. 

With SHARP, various options can be used to present abstracts of the overall 
computer program design at a series of abstracted levels. At the highest 
level of design abstraction, options are used to represent Ada packages, 
which typically encapsulate major components of a large and complex compute: 
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program (e.g., the components used to implement the process tasks shown in 
Figure 4). A catalog of these packages can be shown using the Ada Package 
Catalog (Option A) . Each individual package is represented using an Ada 
Package Content Diagram (Option B) . Each package may access other pack- 
ages, which may, in turn, access other packages. This can be thought of as 
layers of packages, which can be represented using Option B as illustrated 
in Item a of Figure 5, where dashed lines indicate Ada generics. 

At an intermediate level of design abstraction, options are used to repre- 
sent program units encapsulated in a package, as illustrated in Item b of 
Figure 5. Specifically, the structure of nested program units within a 
program unit declared in the specification of a package can be represented 
using the Hierarchy Diagram (Option C). The sequential set of subprogram 
calls within this program unit and the concurrent execution of Ada tasks 
within it can be represented using the Invocation Diagram (Option D). 

At a yet lower level of design abstraction, options can be used to repre- 
sent selective detail. As illustrated in Item c of Figure 5, these 
abstracts can be thought of as "blow ups" of entities identified in invoca- 
tion diagrams. Abstracted detail of data flow between subprograms can be 
shown in a Subprogram Data Flow Diagram (Option E). Abstracted detail for 
task rendezvous can be shown in a Task Rendezvous Diagram (Option F). The 
visibility of type, constant and variable declarations can be shown in a 
Data Structure Diagram (Option G). 

At the lowest level of abstraction, SHARP Annotated Pseudo Code (Option H) 
can be used to show program unit operations, logic and other processing 
within program unit bodies, as illustrated in Item d, Figure 5. This 
represents the junction of SHARP with traditional design presentations 
using PDL. A Data Structure Detail Glossary (Option I) can be used to 
represent data structure details not accounted for in a Data Structure 
Diagram. 

2.2  HIGH LEVEL SHARP ABSTRACTS 

2.2.1  Principles of Object-Oriented Design With Ada 

Using principles of object-oriented design, a large computer program is 
composed with pieces, each associated with one or more objects. An object 
accounts for a subset of software requirements. It is implemented using a 
unique set of operations and a local state defined in a data structure. 
The unique operations and local state are known only to the internals of 
the object implementation. Parameters may be passed from one object 
implementation to another. However, care must be taken in selecting passed 
parameters so as not to introduce interobject dependencies. To the extent 
possible, passed parameters should not include variables and flags used in 
the formulation of the local state and operations unique to the object 
implementation. In this way, undesirable coupling between object implemen- 
tations can be avoided. 

Requirements are assigned to objects so as to make their implementation 
independent and self sufficient, and in a sense, mimic real world objects, 
such as alarm clocks and telephones.  Such real world objects make 
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available to users a small number of basic operations (e.g., set time, 
enable and disable alarm, dial number, answer, hang up), while hiding from 
users implementation details. Hiding information is good for real world 
objects because it prevents interference from other objects (such as dust 
or grit in the case of clocks and telephones), and minimizes the number of 
places to look when something goes wrong. (One doesn't disassemble the 
alarm clock when the telephone fails to ring.) 

Object implementations are very much like real world objects. They exist 
as relatively independent units, which can be combined together to build 
larger object implementations. The combination of objects then becomes a 
new object that presents a simple interface in the form of a collection of 
operations that can be performed on (or by) that object. The fact that an 
object may have to communicate with hundreds of its composite objects in 
order to accomplish an operation is completely hidden. 

Older languages provide only subprograms and henoc support only proeodur.il 
and functional  abstraction.  However, as Cuttage, Horowitz and Muaser point 
out in Current Trends In Programming Methodology, "The nature ol .ilisi r.n- 
i ions that may be conveniently achieved Lhrougy the use ol subroutines is 
1imi ted". 

With Ada, objects can be implemented using packages and tasks. However, 
some experts do not recommend extensive use of Ada tasks due to slow 
rendezvous execution times and potential difficulties in testing. 

Accordingly, Ada packages are important to the implementation of object- 
oriented designs. Information hidden within each package limits 
dependency relationships between objects. Only parameters declared in 
program units, contained within the specification of a package, can be 
passed from one package to another. 

Designers of large and complex Ada computer programs should choose to use 
an object-oriented approach, as opposed to older functional typo design 
approaches. As Grady Booch suggests, a large software system should bo 
built with layers of abstract ion. 4 He feels that each layer should 
account for collections of objects. Furthermore, Booch feels that because 
objects may be independent and autonomous, there undoubtedly will bo 
several threads of control active simultaneously throughout a system. When 
using Ada to implement an object-oriented design, Booch associates objects 
with Ada packages and tasks, and suggests that classes of objects should be 
associated with packages that export parameters of private or limited 
private types. By class of objects, Booch means a set of similar but 
unique objects. By restricting exported parameters to private or limited 
private, the user of the package has limited use of the passed parameter. 
For example, if the parameter is private, the user is excluded from apply- 
ing operations on the parameter other than those operations defined within 
the package specification. The only exception to this rule is assign- 
ments and tests for equality and inequality, which can be made. If the 
parameter is limited private, assignments and tests for equality are no 
longer automatically available. The use of private and limited private is 
relevant to parameters passed between object implementations that may 
couple the implementations. Such restrictions apply to passed parameters 
used in the formulation of the local state and operations unique to an 
object implementation. 
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When used in conjunction with object-oriented designs, some reusable Ada 
packages will themselves be object implementations (e.g., I/O device 
drivers, signal processing algorithms and database management systems). 
Other reusable Ada packages will be used to help construct object 
implementations (e.g., mathematical functions and data structure routines). 

2.2.3 Ada Package Content Diagram (Option B) 

2.2.3a Purpose 

An Ada Package Content Diagram provides a pictorial abstract of an Ada 
package. Specifically, it is used to represent program units declared 
within a package's specification, the existence of data structures, other 
packages nested in the package's body, and package's accessed through the 
Ada "with" clause. 

2.2.3b Description 

As described in Chapter I, an Ada package is the program unit that acts as 
a container for various Ada entitles, including subprograms, tasks, 
except Ions, ntul doc In rations of variables, typos, subtypes, and constants. 
It consists of a specification and a body. The specification can be 
thought of as defining the contractual rights of a user, specifying 
visible entities within the package that the user can reference. Program 
units declared in the body of an Ada package are completely hidden from, 
and inaccessible to any users outside of the package. Similarly, types, 
constants and variables declared within the body of a package are hidden 
and inaccessible. Accordingly, packages are used extensively in designs 
where information hiding is to be introduced. 

The Ada package content diagram represents subprograms and tasks declared 
in the package's specification, as shown in Figure 7. The Ada package 
content diagram does not represent subprograms and tasks nested with the 
bodies of program units visible in a package. Rather, these program units 
are represented by intermediate and lower level pictorial options of SHARP, 
described in Sections 2.3 and 2.4, respectively. 

As also shown in Figure 7, the Ada Package Content Diagram can be used to 
represent packages nested directly in the subject package, and to represent 
the use of the Ada "with" clause to access other packages. The specifica- 
t ion of a packago, or its body, can access out; or more other packages using 
the "with" clause. These packages can, in turn, access other packages. 
The result can be envisioned as layers 'of packages, as illustrated in 
Figure 8. In this figure, generic Ada packages are indicated by dashed 
lines. 

Layers of packages are discussed in conjunction with object-oriented design 
in the example provided in Section 3.3. As described in this section, the 
interaction of object implementations can be shown using a SHARP Invocation 
Diagram (defined in section 2.3.2) for communicating program units (e.g., 
the visible program units declared in the specification of a package used 
to encapsulate an object implementation). 
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FIGURE   7.     ADA PACKAGE CONTENT DIAGRAM (OPTION B) 
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2.3  INTERMEDIATE LEVEL SHARP ABSTRACTS 

2.3.1 Hierarchy Diagram (Option C) 

2.3.la Purpose 

A Hierarchy Diagram represents program units nested in a subject program 
unit (i.e., program units that are both declared and implemented). In 
addition to representing a subprogram or task declared in the specification 
of a package, it can be used, for example, to (1) represent program units 
to be nested in tasks declared in the main program, or (2) represent the 
nested set of program units used to implement the operational part of the 
main program or a package. 

2.3.1b Description 

A Hierarchy Diagram utilizes pictographs defined by Basic SHARP to represent 
program units.  Specifically, a square is used to represent a subprogram, a 
parallelogram to represent a task, and a small rectangle to indicate a 
package "with" clause. 

In the Hierarchy Diagram, nested program units are assigned to levels. The 
subject program unit is assigned to Level 1. Program units declared within 
the subject program unit are assigned to Level 2. In general, a program 
unit declared within a program unit at Level n is assigned to Level n+1. 

As shown in Figure 9, a straight line is drawn from the body of a program 
unit at Level n to the specification of the nested program unit at Level 
n+1; and a straight line is drawn from the small rectangle indicating a 
package "with" clause to the program unit to which the clause applies. 

The name of each program unit can be provided in the program unit's specifi- 
cation or body, or adjacent to the program unit. In Figure 9, each program 
unit is given the name PU (standing for Program Unit) followed by "under- 
score" and a program unit identifier. The identifier consists of the 
program unit's level number and unit letter, (e.g., PU_3b indicates unit b 
in Level 3). In practice, PU typically can be replaced by a name represen- 
tative of the object or function implemented by the program unit (e.g., 
RADAR_TRACKER_2d or FFT_3e). 

2.3.2 Invocation Diagram (Option D) 

An Invocation Diagram displays the flow of control within a computer 
program. Specifically, it represents task activation, task rendezvous, 
and calls to subprograms, including subprograms contained in the specifica- 
tion of a package. The Invocation Diagram is essential in defining depen- 
dency relationships between program units, and therefore, is a useful tool 
in reviewing the complexity of such dependencies. Figure 10 provides an 
example of an Invocation Diagram associated with the Hierarchy Diagram 
shown in Figure 9. The following paragraphs describe the symbols used in 
conjunction with pictographs in an Invocation Diagram. 
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An Invocation Diagram utilizes the pictographs defined by SHARP. However, 
in contrast with a Hierarchy Diagram, an Invocation Diagram directly 
indicates calls to program units contained in package specifications. A 
called subprogram or task belonging to a package is represented by a 
bounded pictograph, as shown in Item a of Figure 11. 

As described in subsequent paragraphs, Invocation Diagrams represent the 
calling sequence of program units, recursive processes, and conditional 
subprogram calls. In addition to representing calls to program units 
declared in packages, Invocation Diagrams also represent other Ada unique 
characteristics such as: 

• Task rendezvous 
• Task activation 
• Generic program units 

2.3.2a Representing a Sequence of Program Unit Calls 

Within an Invocation Diagram, arrows are drawn to the specifications of a 
called subprogram from the bodies of the calling units, as shown in Figure 
11. 

With the exception of program units involved in recursive processes or 
loops, if a program unit is called n times during the execution of a 
program, the program unit must be shown n times in the Invocation Diagram. 

2.3.2b Representing Conditional Subprogram Calls 

A call to a subprogram or task depending upon some transient condition 
(e.g., a 'select,' 'accept,' 'if or 'case' statement) is pictorially 
represented in an Invocation Diagram. Specifically, the existence of the 
transient condition is indicated by a tilde placed on the arrow represent- 
ing a program unit call, as illustrated in Item b of Figure 11. 

2.3.2c Representing Recursive Processes 

A program unit which calls itself recursively is represented by a semi- 
circular arrow, beginning at the bottom of the pictograph representing the 
program unit and ending on its side, as shown in Item a of Figure 12. Two 
program units that call each other recursively are flagged by asterisks 
placed adjacent to a double arrow, as shown in Item b of Figure 12. More 
than two program units involved in a recursive process are flagged by 
asterisks adjacent to a "feedback loop,"as shown in Item c of Figure 12. 

2.3.2d Representing Task Rendezvous 

Task rendezvous is represented by a curved arrow from the body of the 
calling task (or from a circle containing "H/W" if a hardware interrupt) to 
the specification of the acceptor task, as shown in Figure 13. Details of 
task rendezvous are pictorially represented in a Task Rendezvous Diagram, 
as described in Section 2.6. 
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FIGURE   13      REPRESENTING TASK RENDEZVOUS    IN 

AN   INVOCATION DIAGRAM 
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2.3.2.e Pictograph for a Generic Subprogram 

A generic subprogram is represented by a square with a dashed line used to 
establish the narrow part representing the subprogram's specification, as 
shown in Figure 14. 

2.4 LOWER LEVEL SHARP ABSTRACTS 

2.4.1 Subprogram Data Flow Diagram (Option E) 

2.4.1a Purpose and Background Information 

A Subprogram Data Flow Diagram represents data flow between a subject 
program unit and a specified caller. As background information, various 
diagrams have been used to represent data flow. For example, IBM has 
developed HIPO charts (i.e., Hierarchical Input, Processing, and Output), 
as illustrated in Item a of Figure 15. The wide arrow into and out of the 
center rectangle accounts for inputs and outputs, and the center rectangle 
accounts for processing performed on the input to produce the output. 

Item b of Figure 15 shows another example of a Data Flow Diagram. Arrows 
show the data flow and the circles indicate the type of processing to be 
performed on the data. 

2.4.1b Description 

The Data Flow Diagram of Advanced SHARP pictorially represents data flow 
between a subject subprogram and a specified caller, by the modes 
established in the subject subprogram's specification. In Ada, the speci- 
fication defines the mode of parameter passing, which is one of the 
following: 

'in' (i.e. 
modified) 

the value of a parameter is received and not 

• 'out'  (i.e.,  the value of a parameter is created and 
exported) 

• 'in out'  (i.e.,  the value of a parameter is received, 
modified and exported). 

As an example of a procedure specification, consider the following: 

procedure  SAMPLE  (PAR1 
PAR2 
PAR3 
PAR4 
PAR5 
PAR6 
PAR7 

in INTEGER 
in FLOAT 
in out FLOAT 
in out FLOAT 
in out INTEGER 
out FLOAT 
out INTEGER) Is 
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Here a procedure named SAMPLE receives input parameters PAR1 and PAR2, 
which are not modified; receives input parameters PAR3, PAR4, and PAR5, 
which are altered and exported; and exports parameters PAR6 and PAR7, which 
have been created. With SHARP, this data flow is pictorially represented 
by a calling subprogram above the called subprogram, as shown in Figure 16. 

Parameters received (i.e., the in mode) are shown as shaded circles on a 
directed line pointing to the called subprogram from the calling program 
unit. Parameters to be exported (i.e., the out mode) are shown as shaded 
circles on a directed line pointing to the calling program unit. Parameters 
received, modified and exported (i.e., the in out mode) are shown as shaded 
circles on a directed line pointing to both the calling program unit and 
the called subprogram. 

2.4.2 Representing a Generic Subprogram in a Data Flow Diagram (Option E) 

If the parameter being passed has a generic type, the circle on the 
directed line is not shaded, as illustrated in Figure 17. As an example, 
consider the procedure that exchanges two elements with a generic type: 

generic 
type ELEMENT is private 
procedure EXCHANGER (FIRST, SECOND: in out ELEMENT); 
procedure EXCHANGER (FIRST, SECOND: in out ELEMENT) is 
TEMPORARY:  ELEMENT 
begin 
TEMPORARY:-FIRST; 
FIRST:-SECOND; 
SECOND:-TEMPORARY; 

end EXCHANGER; 

The specific name of the generic procedure and the definition of type 
ELEMENT must be created prior to use of this procedure, which is referred 
to as instantiation. We may declare several instances of the generic 
program unit, as illustrated by the following: 

o   procedure INTEGER_EXCHANGE is new EXCHANGER (ELEMENT->INTEGER); 

o   procedure FLOAT_EXCHANGE is new EXCHANGER  (ELEMENT->FLOAT); 

If these instantiations were in a calling procedure named CALLER, the 
Advanced SHARP Data Flow Diagram would be given as shown in Figure 17. 
In addition to making the type of a passed parameter generic, Ada also 
permits the range of values permissible for a passed parameter to be 
generic for the in and in out modes. (The mode out cannot be used with a 
generic parameter.)  For example, consider the following generic procedure: 

generic 
ROW    :  in INTEGER:- 24; 
COLUMNS:  in INTEGER:- 80; 

procedure MATRIX Is 
o 
o 

o 
end MATRIX; 
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It can have several instances, such as 

o   procedure SMALL_MATRIX is new MATRIX (R0WS=>5, COLUMNS->10); 

o   procedure LARGE_MATRIX is new MATRIX (R0WS->130, COLUMNS=>230); 

If these instantiations    were    in    the   calling   procedure   blATRIX_CALL,     the 
Advanced SHARP Data Flow Diagram would be given as shown in Figure 18. 

2.4.3  Task Rendezvous Diagram (Option F) 

2.4.3a Purpose 

The complexities of inter-task relationships may become so intricate that 
software quickly becomes difficult to understand and costly to maintain. 
Task Rendezvous Diagrams provide insight into such complicated task 
rendezvous. 

Invocation Diagrams identify calling and acceptor tasks. However, these 
diagrams do not represent task entry points and give no information about 
the nature of the entry call (conditional, unconditional or time-condi- 
tional) or conditions of its acceptance. Task Rendezvous Diagrams supple- 
ment Invocation Diagrams by pictorially supplying this information. 

2.4.3b Pictographs Used in a Task Rendezvous Diagram 

A Task Rendezvous Diagram utilizes the SHARP pictograph for a task, the 
parallelogram; a pictorial representation for task entries, a small 
parallelogram which overlaps the representation of a task's specification 
and body; and a representation of interrupts from hardware, the circle. 
These pictographs are shown in Item a of Figure 19. 

2.4.3c Representing Task Entry Points 

A rendezvous between two tasks is initiated by one task calling an entry 
declared in another. As is the case for a procedure, parameters to be 
passed can be of the in, out, or in out modes. 

If a task has many entry points (i.e., more than three), they may be 
represented as one long parallelogram with several lines drawn through it. 
In this case, the names of all entry points are shown adjacent to the task, 
as illustrated in Item b of Figure 19. 

2.4.d Representing Access to Task Entry Points 

Task entry calls are shown by three arrows drawn, between the calling task 
and the acceptor task. Circles on these arrows represent parameters being 
transferred. Like the data flow diagram, each of the arrows identifies 
parameters which are either in, out, or In out. The nature of the para- 
meters may be derived from the direction of the arrowhead(s), as explained 
in Paragraph 2.4.1b. 

Item a of Figure 20 illustrates the following task: 
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Procedure MATRIX_CALL 

()     ROWS 

()     COLUMNS 

Procedure MATRIX 

FIGURE   18.     GENERIC PROCEDURE'MATRIX 
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(a)     PICTOGRAPHSUSED IN A TASK RENDEZVOUS DIAGRAM 

READ_POWER 
READ_PRESSURE 
READ_TEMP 
LOG_DATA 

(b)     REPRESENTING TASK ENTRY POINTS 

FIGURE 19.    TASK RENDEZVOUS DIAGRAM 
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CHANGE 
HEIGHT 
NEW   POSITION 

READ_NEW_,ALTITUDE 

(a)   Representing Access to Task Entry Points (all modes) 

READING 
STATE 

POST_ALARM 
STOP 

(b)    Representing Access to Task Entry Points (subset of modes) 

FIGURE   20.    RENDEZVOUS ENTRY POINTS 
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task ALTITUDE_CORRECT is 

entry READ_NEW_ALTITUDE (CHANGE: in REAL; 

HEIGHT: in out REAL; 

NEW_POSITION : out DIMENSION); 

end ALTITUDE CORRECTION; 

A task entry which does not have all three parameter modes may be pictori- 
ally represented with only one or two arrows. A task entry with no parame- 
ters may be represented by a straight line connecting it and the calling 
task. A task entry with only the in and out mode is shown in Item b of 
Figure 20 and the following example: 

task ALARM is 
entry POST_ALARM (READING: 

STATE  : 
entry STOP; 

end ALARM; 

in SENSOR_READINGS; 
out STATUS); 

Thus far, we have been discussing unconditional entry calls; that is, 
patient caller tasks which will wait indefinitely for a rendezvous. With 
SHARP, we can also represent conditional and time-conditional task entry 
calls. A conditional entry call occurs when the calling task requests a 
rendezvous, receives no immediate response from the acceptor task and, 
therefore, takes an alternative action. A conditional task entry call is 
represented by a tilde placed on the appropriate arrow connecting the 
calling and acceptor tasks. Item a of Figure 21 illustrates the condi- 
tional call for the following example: 

task body ALERTER is 

select 
ALARM.POST_ALARM (...); 

else 
. . .  - -  some alternative action 

end select; 

end ALERTER; 

A time-conditional call occurs when the caller task requests a rendezvous 
and waits T units of time for the rendezvous to occur; if there is no 
response, alternative action is taken. The time-conditional call is 
pictorially represented like the conditional call, with a 'T' adjacent to 
the tilde. Item b of Figure 21 illustrates the time-conditional call in the 
following example: 
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POST_J\LARM 
STOP 

(a)    Representing a Conditional Task Entry Call 

POST_AlARM 
STOP 

(b)    Representing a Time Conditional Task Entry Call 

FIGURE   21.    CONDITIONAL TASK ENTRY CALLS 
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task body ALERTER Is 

select 

ALARM.POST_ALARM (...); 

or delay T; 

end select; 

end ALERTER; 

2.4.3e Representing Acceptance of a Task Call 

Like the caller task, the acceptor task may have conditions associated with 
a rendezvous. When this is the case, the entry shall be pictorially 
represented by a tilde inside the entry representation (within the task's 
body). Item a of Figure 22, and the following example, illustrate this 
situation: 

task body ALARM is 

select 
when X -> 

accept POST_ALARM (...) do 

end; 
or 

when Y => 
accept STOP do 

end; 
end select; 

end ALARM; 

Also, like the caller task, the acceptor task may be time-conditioned.  In 
this case, affected entries shall be pictorially represented by a 'T' in- 
side the entry representation (within the task's body).  Item b of Figure 
22 and the following example illustrate this case. 
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POST^ALARM 

STOP 

(a)    Representing Conditional Task Acceptance 

(b)    Representing Time Conditional Task Acceptance 

FIGURE   22.    CONDITIONAL TASK ACCEPTANCE 
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task body ALARM is 

select 
accept POST_ALARM (...) do 

end; 
or 

accept STOP do 

end; 
or 

delay T; -- timeout 
end select; 

end ALARM; 

In addition to the above two cases, acceptances of entry calls may be in 
fixed order (specified) or in time order (first come, first serve). 
Entries accepted in fixed order are represented by numbers within the 
affected entry points where '1' indicates first, as illustrated in Item a 
of Figure 23 and the following example: 

task body ALARM is 

accept POST_ALARM (...); 

accept STOP; 

end ALARM; 

Acceptance on a first arrival basis is represented by a line connecting the 
affected entry points, as illustrated in Item b of Figure 23, and the 
following example: 

task body ALARM is 

select 
accept POST_ALARM (...) do 

end; 
or 

accept STOP do 

end; 
end select; 

end ALARM; 

62 



POST_ALARM 
STOP 

(a)   Representing Acceptance on a Fixed Order Basis 

POST_^LAHM 
STOP 

(b)    Representing Acceptance on a First Arrival Basis 

FIGURE  23. ORDER OF ENTRY CALL ACCEPTANCE 
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2.4.4 Data Structure Diagram (Option G) 

2.4.4a Purpose 

Data Structure Diagrams pictorially present an abstracted representation of 
type, constant and variable declarations within a package, and their 
visibility. These diagrams are a useful tool to a designer when trying to 
utilize the mechanism of information hiding to control dependency relation- 
ships between program units (e.g., for software maintainability and versa- 
tility) or to encapsulate security-critical software. 

Several degrees of information hiding may be achieved by varying the use of 
package specifications and bodies, and through the use of private and 
limited private types. The Data Structure Diagram provides a pictorial 
representation which clearly illustrates visible, hidden, and private 
declarations within a package. 

A Data Structure Diagram also distinguishes between discrete types (i.e., 
numbers and characters) from structured types (i.e., arrays and records); 
and represents discriminate types, access types and task types. 

As shown in Figure 24, declarations of types, constants and variables are 
represented as follows: 

• Upright narrow geometric entities for type declarations 

• Right-slanted geometric entities for constant declarations 

• Left-slanted geometric entities for variable declarations 

2.4.4b Representing Items Declared in the Package Specification 

Items may be declared and decomposed in the specification of a package. 
These items are therefore visible and available to the user. The user may 
access visible entities, utilizing either dot notation or the Ada 'use' 
clause. Pictorially, visible declarations are represented as unshaded ver- 
sions of the geometric entities used to represent types, constants and 
variables. A number placed directly above each entity, is associated with 
a declaration name, as illustrated in Figures 24. 

2.4.4c Representing Items Declared Private or Limited Private 

Items can be declared private or limited private in the visible part of the 
package specification and refined in the private part. This restricts the 
use of such items. Specifically, if an item is private, the user can only 
apply to it operations defined within the package specification, and 
assignments and tests for equality. If an item is limited private, assign- 
ments and tests for equality are no longer automatically available. 
Pictorially, such declarations are represented by partially shaded geomet- 
ric figures, as illustrated in Figure 25. 
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TYPE DECLARATIONS 

1. AXIS-PAIRS 
2. PRIORITY 

BUFFERING 
ALERT 

NATURAL 

DEGREES 

CONSTANT DECLARATIONS 

1. MAX 

2. MIN 
3. PROB_IN_POWER 
4. PROB_OUT_POWER 

5. PROB_IN_PRESSURE 
6. PROB_OUT_PRESSURE 

7. PROB_IN_TEMP 

8. PROB_OUT_TEMP 

9. ANGLE_1 

10. ANGLE_2 

11. POWER_VALUE 

VARIABLE DECLARATIONS 

1. ENVSIM 

2. COUNTER 
3. CURRENT_AXES 
4. NEXT_AXES 

5. RANDOM_NUM 
6 DELTA_POWER 
7 DELTA_PRESSURE 

8 UPPER_POWER 
9 UPPER_PRESSURE 

10 LOWER_POWER 
11 LOWER_PRESSURE 

12 UPPER_TEMP 

13 LOWER_TEMP 

14. CURRENT_STATE 

15. CURRENT_VALUE 

5AMPLE-P10 

^ PU_A_(P10) PU_B_(P10) PU_C_(P10) PU_D_(P10) 

1     2    3    4    5    6 

DDDDDD 
1     2    3 5    6     7     8    9    10   11 

1     2    3    4     5    6     7    8     9   10    11   12   13   14   15 

TYPE/SUBTYPE 
DECLARATIONS 

CONSTANT 
DECLARATIONS 

VARIABLE 
DECLARATIONS 

FIGURE  24.    VISIBLE DECLARATIONS IN A PACKAGE SPECIFICATION 
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SAMPLE_P10 

q 
PU-A_|PtO) PU_B-[P'OI PU-C-IPIOI PU_D_lPlO> \ 

l      2      1      4      5      6       7      8 

aaaaaoaa 
l       23456789      10 

TYPE SUBTYPE 
DECLARATIONS 

CONSTANT 
DECLARATIONS 

VARIABLE 
DECLARATIONS 

FIGURE 25 •     VISIBLE AND PRIVATE DECLARATIONS IN A PACKAGE SPECIFICATION 
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2.4.4d Representing Items Declared in the Package Body 

Entities declared within the body of a package are inaccessible to program 
units external to the package. Such hidden declarations are represented by 
shaded geometric figures, as shown in Figures 26. 

At design reviews or when teaching Ada, we may want to select other options 
for showing the visibility of declared entities.  For example, 

• Magnification of both the body and specification of a 
package can be used to show data structure detail of both 
hidden and visible entities declared directly in the package 
(i.e., not under any other program unit), as illustrated in 
Figures 27. 

• Magnification of a package body and the bodies of program 
units within the package, to show all items declared within 
a package body (both directly and under a program unit), as 
illustrated in Figures 28. 

• A combination of the previous options to show the visibility 
of all visible and hidden items declared both in the package 
directly and within all program units contained within the 
package, as shown in Figures 29. 

2.4.5  Representation of Types 

2.4.5a Representing Discrete Types 

A discrete type, or scalar type, defines a set of values that have no 
components. They include integer, real and enumeration types. As shown in 
Item a of Figure 30, an integer type is represented by an upright narrow 
rectangle with the letter "I" underneath it; a real type with the letters 
"RL"; and an enumeration type with the letters "EN". 

2.4.5b Representing an Array type 

An array is a collection of components, with each component of the same 
type. An array type is represented by an upright narrow rectangle with the 
letters "AR" underneath it, as illustrated in Item b of Figure 30. 

2.4.5c Representing a Record Type 

A record is also a collection of components. However, records differ from 
arrays in that not all components must be of the same type. Also, the 
selection of a record component is always static and determinable at the 
compile time, whereas an array component can be made dynamically at run 
time (by evaluating an expression denoting an index value). A record type 
is represented by an upright narrow rectangle with the letter "RC" under- 
neath it, as illustrated in Item b of Figure 30. 
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SAMPLE-P10 

PU^A_,PlO) PU_B-(P10> PU_C-(P10) PU_D_(P10| 

TVPE SUBTYPE 
DECLARATIONS 

CONSTANT 
DECLARATIONS 

VARIABLE 
DECLARATIONS 

FIGURE   26-    NON-VISIBLE DECLARATIONS IN A PACKAGE BODY 
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12      3      4 

12      3      4       567       89 

ill 
aaaaoaBBi 
12      3      4       5     6      7      8      ?      io    H    12 

TYPE SUBTYPE 
DECLARATIONS 

CONSTANT 
DECLARATIONS 

VARIABLE 
DECLARATIONS 

FIGURE 27.     REPRESENTING VISIBLE DECLARATIONS IN A PACKAGE SPECIFICATION 
IN CONJUNCTION WITH NON-VISIBLE DECLARATIONS IN A PACKAGE BODY 

SAMPLE-P10 

PU-A_(PiOI PU-B-lPiOl PU_C_(PI0> Pu_O_(Pl0) 

3      4      5     6 

1111 
9      '0      11 

/// 
II     '2     13    u     15 

TYPE SUBTYPE 
DECLARATIONS 

CONSTANT 
DECLARATIONS 

MRIA61I 
n( *;LAHA1K »N . 

FIGURE 28.     REPRESENTING NON-VISIBLE DECLARATIONS IN A PACKAGE BODY AND THE 
BODY OF A PROCEDURE CONTAINED WITHIN THE PACKAGE 
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12      3     4        5      6 

1234567       8        9     10     11 

iiSIl 
mm 

l       2      3      4      5      6       7      9      9      10     11     12   13     14    '5 

TYPE SUBTYPE 
DECLARATIONS 

CONSTANT 
DECLARATIONS 

VARIABLE 
DECLARATIONS 

FIGURE 29.     REPRESENTING ALL VISIBLE AND NON-VISIBLE DECLARATIONS WITHIN A PACKAGE 
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TYPES/ 
SUBTYPES 

CONSTANTS 

VARIABLES 

(a)   REPRESENTING AN INTEGER TYPE, REALTYPE AND ENUMERATION TYPE 

TYPES/ 
SUBTYPES 

CONSTANTS 

1 2 3 4 5 6 7 8 

I AR        RC        D        AC I T T 

123456789 

onanannaa 
1 2345678 9 10 

VARIABLES 

(b)    REPRESENTING AN ARRAY TYPE, RECORD TYPE, DISCRIMINATED TYPE, 
ACCESS TYPE AND TASK TYPE 

FIGURE 30.      REPRESENTING TYPES 
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2.4.5d Representing a Discriminated Type 

Ada also facilitates a discriminated types, where variables of this typo 
are called "discriminants." A record with discriminants may have (a) 
variant parts in which certain components are present only for certain 
values of the discriminant, and (b) array components whose bounds are fixed 
by the values of discriminants. Conceptually, a discriminated type can be 
thought of as introducing a set of record values, each value in the set 
having a different structure. A discriminated type is represented by an 
upright narrow rectangle with the letter "D" underneath it, as illustrated 
in Item b of Figure 30. 

2.4.5e Representing an Access type 

As an alternative to statically allocated data, Ada provides a mechanism 
for allocating variables dynamically during program execution. Since the 
storage locations used for dynamic variables are not determined in advance, 
they cannot be referenced by a name but must instead be referenced indir- 
ectly via a so-called access type. Unknown amounts of data can be handled 
by dynamically allocating storage to each new datum when it is received. 
In this way, complex data structures can be built with components dynami- 
cally allocated. An access type is represented by an upright narrow 
rectangle with the letters "AC" underneath it, as illustrated in Item b of 
Figure 30. 

2.4.5f Representing a Task Type 

A task type is formed when the keyword task is followed by the keyword 
type. Elaboration of the corresponding task body defines what a task of 
that type does. It does not cause a task to be activated. Rather, tasks 
are activated separately by declaring variables of the task type. A task 
type is represented by an upright narrow rectangle with the letter "T" 
underneath it, as illustrated in Item b of Figure 30. 

2.4.5g Representing the Type of a Variable and Constant 

The type of a variable or constant can be represented as follows: 

o If the type is predefined, then the first letter of the type 
(e.g., I for INTEGER) is placed under the geometric repre- 
sentation of the variable or constant. 

o If the type is defined, the letter "T" followed by the type 
glossary number is placed under the geometric representation 
of the variable or constant. 

For example, in Figure 31, variables number 1 and 3 are of the predefined 
type INTEGER, variables number 2 and 4 are of the predefined type BOOLEAN, 
variable 5 is of defined type Tl, variables 6 and 8 are of defined type T2, 
and so forth. 

2.5  LOWEST LEVEL SHARP ABSTRACTS 

At a low level of abstraction, SHARP junctions with traditional design 
representation using Ada-based pseudo code and a glossary of data structure 
detail.  This is the lowest level of design abstraction with SHARP. 
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TYPES/SUBTYPES 

CONSTANTS 

VARIABLES 

12 3 4 5 

00010 
RC I EN I I 

12 3 4 

aooa 
I I B T5 

1 2345 6 789 10 11 

wwwwwwwmw 
I B I B T1        T2        T3 T2 T4        T5        T3 

FIGURE 31.     REPRESENTING THE TYPE OF A VARIABLE AND CONSTANT 
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2.5.1  Annotated Ada-Based Pseudo Code (Option H) 

SHARP utilizes annotated pseudo code to represent the design of program 
unit bodies. SHARP criteria include general standards for the pseudo code 
and its annotation. Standards of the criteria require that the name of the 
subject program unit is clearly shown, and the beginning and end of the 
pseudo code for the subject program unit is bracketed as follows: 

Begin Procedure SAMPLE_1   

o 
o 
o 

End Procedure SAMPLE 1 

In addition, the standards require the pseudo code to account for the 
following: 

Logic and decisions 
Algorithms 
Program unit calls and I/O 
Generic instantiation 
Exception handling 

The standards require that the design associated with these factors must be 
presented using certain Ada key words and annotation, as described in the 
following paragraphs. 

2.5.1a Logic and Decisions 

SHARP criteria states that Ada control statements must be used to represent 
the design for logic and decisions made in the body of a program unit. For 
example, the if and case statements are used to provide conditional control 
(i.e., the selection of one of a number of alternate actions). 

The if statement selects a course of action depending upon the truth value 
of one or more conditions. In Ada, there are three basic forms of the if 
statement: 

• if-then 
• if-then-else 
• if-then-elsif 

In each case, the if statement is terminated with an end if clause. SHARP 
pseudo code annotates the if statements with brackets bounding the begin- 
ning and end of the statement, as illustrated in Item a of Figure 32. 

The case statement provides for the selection one of a set of multiple 
alternative actions, as a function of the value of an expression. Only one 
of the alternative actions is taken. SHARP pseudo code annotates the case 
statement with brackets as illustrated in Item b of Figure 32. 
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Begin Procedure SAMPLE_2A_ 

if Y>0 then 

end If 

if XX) then 

else 

end if 

if A-B then 

elsif A-C then 

else 

end if 

End Procedure  SAMPLE A 

(a) USE OF "IF" STATEMENTS 

FIGURE 32. ANNOTATED PSEUDO CODE 
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Begin Procedure SAMPLE_2B_ 

case TEST  is 

when PASS Call Procedure CONTINUE 

when FAIL Call Procedure RESTART 

end case n 
End Procedure SAMPLE 2B 

(b) USE OF THE "CASE" STATEMENT 

Begin Procedure SAMPLE_2C_ 

loop 

end loop_ 

loop   

loop 

end loop_ 

end loop 

End Procedure SAMPLE 2c 

(c) USE OF THE "LOOP" STATEMENT 

FIGURE 32. (CONTINUED) 
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Begin Procedure SAMPLE _2D_ 

for i-1,2, ..  N 

end loop 

while B>0 loop 

end loop 

[ 

End Procedure  SAMPLE  2D 

(d)     USE OF THE "FOR" AND "WHILE" STATEMENTS 

FIGURE 32.      (CONCLUDED) 
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Repetitive execution of action is accomplished in Ada using the loop state- 
ment. The basic loop is accomplished using a loop and end loop statement. 
To leave a loop, an exit statement is used. SHARP pseudo code annotates 
the loop statement with brackets, as illustrated in Item c of Figure 32. 

To repeat a loop for a specific number of times, the basic loop can be 
preceeded by a for iteration clause. Also, another form of iteration can 
be accomplished with the while statement, whereby a sequence of statements 
is repeated as long as some condition is true. SHARP pseudo code annotates 
the for and while statements with brackets, as illustrated in Item d of 
Figure 32. 

2 . 5.lb Algorithms 

SHARP criteria state that all mathematical algorithms to be implemented in 
the body of a program unit must be clearly shown in the pseudo code.  The 
criteria makes no constraints on how the formulation is presented.  There- 
fore, either the notation of mathematics or a programming language is 
applicable. 

2.5.1c Program Unit Call 

SHARP criteria state all program unit calls made in the body of a program 
unit must be shown by the pseudo-code, but does not require specification 
of parameters passed in conjunction with the call. The parameter passing 
is shown by SHARP Data Flow Diagrams (for subprograms) and by SHARP Task 
Rendezvous Diagrams. As illustrated in Figure 33, SHARP does require that 
annotation be provided to identify the package a program unit is to be 
implemented in, if it is to be other than the package (or task) of the 
subject object implementation. 

Begin Procedure SAMPLE_3 

CALL Procedure EX_1 
CALL Procedure C0MM0N_R1 
Call Procedure EX 2 

  Package Pi 

Call Entry A in Task BUFFER 
Call Entry B in Task BUFFER 

End Procedure SAMPLE 3 

FIGURE 33. SHARP PSEUDO CODE FOR REPRESENTING 
PROGRAM UNIT CALLS 
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2.5.Id Generic Instantiation 

The specific parameters passed between object implementations is represen- 
ted by SHARP Data Flow Diagrams. This diagram represents parameters being 
passed as shaded circles on directed lines. 

If the program unit being called is generic, the line introduced to parti- 
tion a pictograph into a narrow part (i.e., to represent the program unit's 
specification) and a wide part (i.e., to represent the program unit's body) 
is dashed, as illustrated in Figure 34. In Ada, the specific name of the 
generic procedure and the definition of unspecified types must be created 
prior to calling a generic program unit. This is referred to as 
instantiation. 

In addition to making the type of a passed parameter generic, Ada also per- 
mits the range of values permissible for a passed parameter to be generic 
for the in and in out modes of parameter passing. (The mode out cannot be 
used with a generic parameter.) Several instances of such values can be 
established in generic instantiations. 

SHARP criteria state that generic instantiation must be represented in the 
SHARP pseudo code for program unit bodies. As shown in Figure 35, this 
pseudo code is bracketed by dashed lines. 

2.5.1e Input/Output 

The high level input/output (I/O) facilities provided in Ada are not, as in 
other languages, supplied in the form of additional language constructs. 
Rather I/O is accomplished using the predefined packages SEQUENTIALIO, 
DIRECT_IO and TEXT_IO. Their package specifications give a precise des- 
cription of the I/O facilities provided. TEXT_IO is used to read in data 
generated by humans and to write out data to be read by humans. 

SEQUENTIAL_IO and DIRECT_IO are used for data written and read by a 
computer and not a human (e.g., to store data on disc or magnetic tape). 
They are generic Ada packages. For example, to declare files for elements 
of a given type, an instance of the package must be declared and the 
required element type must be specified as an actual generic parameter. 
Such generic instantiation is represented using annotated pseudo code, as 
we have already explained. Generic instantiation for this package is 
explained in Chapter 15 of An Introduction to Ada. *• 

Unlike SEQUENTIAL_IO and DIRECT_IO, TEXT_IO is not generic but is an 
ordinary Ada package.  It is accessed using the Ada 'with' clause. 

In SHARP pseudo code, calls to program units contained in package TEXT_IO 
is presented in the manner described in Paragraph 2.5.1c. Instantiation of 
program units contained in packages SEQUENTIAL_IO and DIRECT_IO is 
presented in the manner described in Paragraph 2.5.Id. 
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COMMON   UNITS 

FIGURE 34.    SHARP REPRESENTATION OF A GENERIC PROGRAM UNIT 

3egin Procedure SAMPLE_4 

Call Generic Procedure COMMON_R2  
where type ELEMENT is INTECER 

type SUPPLEMENT is INTEGER 
ROW > 5 
COLUMN > 10  

End Procedure  SAMPLE 4 

COMMONJJNITSJ- 

FIGURE 35.     SHARP REPRESENTATION OF A GENERIC INSTANTIATION 
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2.5.If Exception Handling 

Ada provides an explicit mechanism for detecting and responding to an 
anomaly. The anomaly, for example, could be associated with erroneous 
input data or overflow conditions. SHARP criteria require that the design 
of a program unit's body must specify the detection of the anomaly and the 
course of action taken after the occurrence of the anomaly. 

In Ada, the detection of the anomaly causes normal program execution to be 
suspended and control transferred to an exception handler. Once the 
exception handler has completed its processing, control transfers to code 
following the exception handler code. 

Figure 36 provides an example of annotated SHARP pseudo code used to 
specify the detection of an anomaly and action taken in an exception 
handler. SHARP criteria requires that (a) the pseudo code for the anomaly 
detection must be introduced by the key words 'raise exception' and must be 
bracketed as shown in the figure; (b) the pseudo code for the action taken 
upon occurrence of the anomaly must be introduced by the key words 
'exception handler,' must be concluded with the key word 'end,' and must be 
bracketed as shown in the figure, and (c) an arrow must point from the 
bracket enclosing pseudo code for the anomaly detection to the bracket 
enclosing pseudo code for the exception handler. 

2.5.lg Example 

Figure 37 provides an example of annotated SHARP pseudo code. 

2.5.2 Data Structure Detail Glossary (Option I) 

A SHARP data structure diagram presents an abstracted representation of 
types (subtypes), constants and variables. It establishes the name and 
visibility of each. It indicates the type of each variable, including 
arrays, records, discriminants and dynamic variables (which are designated 
as access types).  It represents types and variables declared as private. 

To complete the description of a data structure, a glossary can be used to 
designate additional detail, including the following: 

• The use of a variable and constant 

• The range of values the design designates as 
permissible in'a type and subtype 

• The components associated with a record type 

• The type of designated variables associated with 
an access type. 

3   APPLICATION OF THE SHARP PICTORIAL ABSTRACTS 

This section presents examples of general applications of the various 
pictorial options of SHARP. Examples of specific applications are provided 
in Chapters III and IV. 
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Begin Procedure SAMPLE_5_ 

Call Procedure SENSOR 
--it returns the parameter SENSOR_VALUE 

raise exception 

if SENSOR_VALUE>20 millivolts 
in SENSOR VALUE<10 millivolts 

exception handler 

when SENSOR_VALUE<10 
Call Procedure SOUND_ALARM 

when SENS0R_VALUE>10 
Call Procedure RESTART 

end 

End Procedure SAMPLE 5 

FIGURE 36.   SHARP ANNOTATED PSEUDO CODE FOR RAISING 
AND HANDLING EXCEPTIONS 
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Begin Procedure SOFT_DEV_ESTIMATE 

#SS - 0 

for 0 - 1, 2, ... 0(p) 

<*DATA - # TYPES (p,o) + #CONSTS(p,o) + #VARS(p,o) 

ePCALL - #SUBCALL(p.o) + #TASKS(p,o) 

#PBOD - #INSPECT_COUNT(p,o) 

DSI(p.o) - »DATA + wPCALL + *PBOD 

#SS - #SS + DSI(p.o) 

end loop 

pnd loop                                                _. 

if LANGUAGE - FORTRAN then 

*SS - #SS*FORTRAN_CALIBRATE 

else if LANGUAGE - JOVIAL Chen 

*SS - *SS*JOVIAL_CALIBRATE _ 

else if LANGUAGE_ASSEMBLY chen 

#SS - #SS*ASSEMBLY_CALIBRATE 

else 

#SS  -  #SS*ADA_CALIBRATE    

end   if  

raise excepcion 

if »SS= 2000 

(b 

FIGURE 37.    EXAMPLE OF ANNOTATED PSEUOO CODE 
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case COCOM_MODE is 

when ORGANIC -> 

0 
K - 2.U 

E - 1.05 

when SEMI_DETACHED -> 

K - 3.0 

E - 1.12 

when EMBEDDED -> 

K - 3.6 

E - 1.2 

1 case 

Call Procedure COST ESTIMATE 

Call Generic Procedure SCHEDULE_ESTIMATE 

where 

KGEN - K 

EGEN - E 

excepcion handler 

Call Procedure MODULE_ESTIMATE 

end excepcion handler __^__^___ 

Package P10 

End Procedure SOFT DEV ESTIMATE 

FIGURE 37. (CONCLUDED) 
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The examples are given in the context of a designer presenting his design 
requirements at a design review. The examples illustrate the versatility 
of the SHARP notation. The notation is shown to effectively represent 
extremes in combinations of program units that a designer may choose in the 
implementation of a large Ada computer program, regardless of whether an 
object-oriented or more traditional design approach is being taken. 

3.1 EXAMPLE 1 - SOFTWARE ABSTRACTION WITH PROCESSES 

As discussed in Section 3.1 of Chapter I, processes consist of chains of 
software modules introduced to (a) satisfy user commands and communication 
interface requests and (b) perform processing automatically initiated on a 
periodic or some other basis. Processes execute concurrently in the time 
slice sense. 

With languages such as FORTRAN, processes execute concurrently under 
operating system control. With Ada, a designer can choose to implement 
each process within the body of an Ada task, declared in the main program. 

Figure 38 provides an example of representing the tasks nested in the main 
program. As discussed in Chapter I, the diagram also indicates Ada 
packages the designer wants the main program to access, through the Ada 
"with" clause; and subprograms the designer wants nested in the operation- 
al part of procedure MAIN. 

This high level diagram can be used by a designer to represent interfaces 
between the large Ada computer program and the "outside world." As a high 
level diagram, it provides a manager with a conceptual view of the func- 
tions of the large Ada computer program. 

3.2 EXAMPLE 2 - SOFTWARE ABSTRACTION WITH PROCESS LEVELS 

Since the requirements of a process are often complex, a designer typically 
will use additional abstraction in the development and presentation of his 
design. For example, a relatively small and easily comprehended portion 
can be implemented at one level, with the rest of process requirements 
implemented at other levels. At each other level, the technique is repeat- 
ed, with abstraction of variables and manipulation of the data. The 
designer may choose to abstract the design using layers of packages, which 
is discussed in Section 3.3 of this chapter. The problem may lend itself 
to abstraction using Ada tasks, which is discussed in Section 3.4 of this 
chapter. Alternatively, the designer may choose to implement the design 
using a controlling structure of subprograms and tasks assigned to levels, 
which access packages using the Ada "with" clause. 

With this approach, the body of each task, activated in procedure MAIN to 
account for a process, is abstracted by constraining the amount of detail 
within it to an easily understood amount. Excluded detail can be passed to 
the bodies of called program units. The called program units may be 
contained in an Ada package, which is made available through the use of the 
Ada "with" clause. 
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The deferred bodies of the called program units can be designed subject to 
the same constraints that applied in the design of the task's body. 
Therefore, these bodies are also constrained to an easily understood amount 
of detail, with lower detail moved again to called program units. 

To illustrate the physical layout of Ada source code prepared in accordance 
with such an abstracted design, consider the sample computer program shown 
in the Appendix B. The main program appears first, followed by a set of 
program unit threads for each process. Implementation of this program would 
require thousands of lines of Ada code. The information provided in the 
listing in the Attachment requires several pages, even in its "skeleton" 
form. As shown in Figure 39, the same information can be provided in SHARP 
Hierarchy Diagrams (Option C) on one page. Therefore, this abstract can be 
used at design reviews to summarize thousands of lines of implementing 
code. 

Figure 40 illustrates how the SHARP Invocation Diagram (Option D) can be 
used by the designer to show the sequence of calls for the program units 
identified in a hierarchy diagram. In addition, the designer can select a 
set of other SHARP options to provide Ada abstracts of lower level detail. 

For example, Figure 41 illustrates how a designer can use the Subprogram 
Data Flow Diagram (Option E) to specify data flow into and out of program 
unit PU_A3a of Thread A. As another example, Figure 42 illustrates how a 
designer can use Annotated Pseudo Code (Option H) to specify conditions of 
procedure calls between Levels 3 and 4 of Thread C, flagged as conditional 
by the Invocation Diagram. 

The designer might use the Task Rendezvous Diagram (Option F) to show 
details of rendezvous between tasks. Examples of these diagrams are 
provided in Section 3.4 of this chapter. 

The designer also might use the Data Structure Diagram (Option G) to show, 
for example, the visibility of types, variables, constants and task types. 
Examples of these diagrams are provided in the next section. 

3.3  EXAMPLES 3 - SOFTWARE ABSTRACTION WITH ADA PACKAGES 

As we suggest in the previous section, a designer may choose to abstract 
the design using layers of packages. This approach can be used in conjunc- 
tion with object-oriented design to minimize dependency relationships 
within a large Ada computer program, a potentially significant problem. 

As discussed in Section 2.2 of this chapter, object-oriented design is a 
software development method in which a large computer program is composed 
with object implementations. Each object implementation consists of a set 
of operations unique to it and a local state defined in a data structure. 
The implementation of unique operations are known only to the object. The 
parameters describing the object and its state may be passed as parameters 
to other objects. 
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PU-P7 

' ' 

PU_Pl5a 
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FIGURE 40-   SHARP INVOCATION DIAGRAM 
(Option D, Example 2) 
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FIGURE 41,   SHARP DATA FLOW DIAGRAM 
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procedure PU_A3a 
--Pseudo Code in an Operations Diagram 

begin -- PU_A3a 

if PAR3<T1 then 

Call . Procedure PU P7     I Package P7 -L 

else if PAR4<T2 then 

Call Procedure PU A4a 

else if PAR5<T3 then 

Call Procedure PU_A4b 

else 

end if; 

end PU A3a; 

FIGURE 42.     USE OF ANNOTATED PSEUDO CODE (OPTION H. EXAMPLE 2) 
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In Ada, packages are important to the implementation of object-oriented 
designs. Information hidden within each package limits dependency rela- 
tionships between objects. Only parameters declared in program units, 
contained within the specification of a package, can be passed from one 
package to another. 

A designer can use a set of Ada Package Content Diagrams (Option B) to show 
multiple packages, each encapsulating an object implementation. The 
multiple packages can be thought of as layers of packages, as illustrated 
in Figure 43. In this example, the designer has introduced a procedure in 
each package as the interfacing program unit. Each interfacing program 
unit communicates with other corresponding interfacing program units in 
other packages. In practice, it is desirable to keep the interfaces 
between the packages as simple as possible. Parameters passed between 
object implementations should not couple the implementations. The data 
flow between interfacing procedures can be specified using Subprogram Data 
Flow Diagrams (Option E). 

Figure 44 illustrates how a designer can use an Invocation Diagram (Option 
D) to specify the sequence of calls between the package layers. In this 
example, the designer requires that the procedure in PI calls the procedure 
in P2, which in turn calls the procedure in P3. The procedure in P3 calls 
procedures in P4 and P5. This procedure in P5 recursively calls the 
procedure in P2. 

Each package _ may be complex within itself, although its interface with 
other packages may be kept relatively straightforward. Program units 
contained within the body of a package are hidden from the other packages. 
As illustrated in Figure 45, the complex inner structure of the package can 
be specified using one or more of the SHARP options, in the same manner as 
the detailed design was shown for a process thread as discussed in Section 
3.2 of this chapter. 

3.4  EXAMPLE 4 - SOFTWARE ABSTRACTION WITH ADA TASKS 

As also indicated in Section 3.2, abstraction can be accomplished using 
tasks in the main program to implement processes. At lower levels, tasks 
can also be used (e.g., to monitor multiple sensors). As described 
in Buhr's book System Design with Ada \ special purpose tasks termed 
"slaves, starters, schedulers, buffers, secretaries, agents, transporters 
and pools" can be used in various combinations to facilitate processing 
needs. 

At the lower levels, abstraction with tasks takes place so that processing 
requirements and data structures can be spread among different tasks, all 
executing concurrently in an independent manner. In this way, tasks can be 
used, to a certain extent, in object-oriented designs in that the local 
state of an object implementation can be is defined by variables local to 
the task; and operations within the body of the task are unique to the 
object implementation. 

If a designer decides to extensively use Ada tasks, he can use the Invoca- 
tion Diagram (Option D) to show rendezvous or conditions of rendezvous, as 
illustrated in Figure 46.  The designer can use a Task Rendezvous Diagram 
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FIGURE 44.    INVOCATION DIAGRAM 
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FIGURE 46.  INVOCATION DIAGRAM 
(Option D, Example 4) 
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(Option F) to specify task entry points, conditions of task acceptance and 
parameters passed during rendezvous, as illustrated in Figure 47.  As men- 
tioned in the case of conditional procedure calls, the designer can show 
the logic calls and conditional acceptances using the SHARP Annotated 
Pseudo Code (Option H). 

As we have indicated, some feel that such use of multiple tasks should be 
constrained due to slow rendezvous times and potential complicated 
temporal properties. The complex temporal properties may be difficult to 
test during computer program development and maintenance. 

4   CHAPTER SUMMARY 

SHARP establishes a set of pictorial options that can be used to represent 
the design for an Ada computer program, whether designed by object-oriented 
or traditional methods. As such, SHARP abstracts are effective at design 
reviews, and to help specify requirements for a large and complex computer 
program in design documentation. SHARP abstracts apply equally well to 
all extremes of Ada designs, including design abstraction with layers of 
Ada packages, extensive use of Ada tasks, and mixtures of packages, tasks 
and subprograms. 

The options of SHARP produce various abstracts of an Ada computer program. 
The Ada package content diagram presents at a high level an overview of an 
Ada package. The hierarchy and invocation diagrams are intermediate level 
diagrams that present the overall structure and invocation sequence of 
program units nested in a subject program unit (e.g., a procedure declared 
in the specification of a package). 

Lower level design detail can be specified in rendezvous, subprogram dat.i 
flow and data structure diagrams. However, each of these diagrams is at a 
substantially higher level than PDL. 

At the lowest level, annotated pseudo code can be used to represent the 
data structure detail and operational part of the body of a program unit, 
and a glossary can be used to define certain data structure detail. At 
this lowest level of abstraction, SHARP junctions with traditional design 
presentation techniques in a manner similar to PDL. 
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PART TWO:  APPLICATION OF SHARP 

CHAPTER III 

Basic Issues in Object-Oriented Design With Ada 

This chapter addresses basic issues in designing an Ada computer program 
using principles of decoupling inherent in an object-oriented design. The 
issues are raised through example. 

With the example, we illustrate the object-oriented design approach and the 
inherent effective software maintainability associated with an Ada computer 
program that has been designed in an object-oriented manner. Then we 
address increasing the execution speed and constraining the use of memory 
within the Ada-unique object-oriented design suggested for the example. 
Variations on the example demonstrate that whatever the design goals, the 
resulting object-oriented design can be effectively represented by 
abstracts of SHARP. 

This chapter is very basic in nature and is meant for those unfamiliar with 
steps needed to develop an Ada-unique object-oriented design. 

1   INTRODUCTION 

1.1 BACKGROUND 

In the past, the cost of software development has been relatively high and 
has increased exponentially as a function of the size of a computer 
program. These high costs can be attributed to several factors, including 
the effect of complex dependency relationships between types, variables and 
program units introduced using traditional software design and development 
techniques. 

As described in Chapter II, complex dependency relationships can be con- 
trolled using Ada-unique object-oriented techniques, and in this way 
software development costs can be significantly reduced. With Ada, the 
object-oriented approach is also critical because of the speed of Ada 
compilers. Object implementations within a large and complex Ada computer 
program can be encapsulated in loosely coupled Ada packages and tasks, 
which the development team can code and test independently. By constrain- 
ing their size and stubbing program units interacting with them, the Ada 
packages and tasks can be compiled individually and recompiled in a timely 
manner during during their development. 

Because of the need to control complex dependency relationships and to 
adapt to slow Ada compilers, it is anticipated that large Ada computer 
programs by necessity will be developed using object-oriented techniques. 
In practice, a designer must make several decisions with respect to sub- 
division of processing requirements into objects and the implementation of 
each object. The extent of decoupling of the implemented objects and the 
object selection approach taken are driven by design choice and constraints 
associated with such things as memory and execution speed limitations. 
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1.2  CHAPTER SCOPE 

In this chapter, variations on an object-oriented design are discussed for 
a sample problem. The variations are introduced due to different design 
goals. Through example, it is shown that typically we cannot speak of an 
unique optimal design. Rather the design is driven to a significant extent 
by the designers objectives, be they maintainability, execution speed, 
constrained memory or some other goal; the extent and manner in which he 
decides to implement the object-oriented design in Ada; and the extent to 
which he constrains the interaction between objects to limit dependency 
relationships. 

Section 2 establishes requirements for a sample problem and describes an 
object-oriented design for the sample problem. It provides a second 
version of this design, a modification of the original design to increase 
execution speed; and also a third version of the design, a modification of 
the original design to save on memory used. 

2    EXAMPLES OF AN ADA-UNIQUE OBJECT-ORIENTED DESIGN 

Let us consider restart/recovery capabilities in a large and complex Ada 
computer program. In this program, several application module transactions 
execute concurrently. 

The computer program is to have the capability to abort a transaction, 
restart it from its beginning, or recover the transaction by restarting 
from a dynamically established point in the program (e.g., a breakpoint or 
checkpoint); all as commanded by an operator from a work station. 

A transaction tracking table is to be established to record pertinent 
information about the transactions (e.g., transaction type, responsible 
operator, console ID, status and breakpoint information). When a trans- 
action is recovered, restarted or aborted, the transaction table must be 
updated to reflect this event. Also, a counter must be incremented after 
each transaction to keep a record of how many times a transaction has been 
restarted or recovered. 

In Section 2.1, we consider an Ada-unique design for the restart/recovery 
software with efficient future maintainability as a goal. In Section 2,.2, 
we address variations on the original design introduced due to speed and 
memory constraints. Although the sample problem is relatively small, its 
design is developed as if it were a large and complex situation, so as to 
demonstrate the Ada-unique object-oriented design approach and its 
representation with SHARP abstracts. 

2.1 ADA-UNIQUE DESIGN CONSIDERATIONS 

Developing Ada-unique software in an object-oriented manner is expected to 
lower software development costs, as quantified in Chapter VII. More 
importantly, this approach is expected to significantly lower software 
maintenance costs. 
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The localization of design complexity inherent in an object-oriented design 
simplifies software maintenance. In the past, global parameters and 
routines were shared among many program units. If during maintenance, any 
one of the global parameters or routines had to be changed in conjunction 
with a program update or improvement, the change often adversely affected 
several parts of the computer program. Seemingly innocent changes typical- 
ly caused serious problems. However, by localizing design complexity in an 
object-oriented manner, the effect of maintenance changes are trapped 
within the implementation of an object. As Booch observes, "The benefit of 
this facility (minimizing dependencies) should be clear: not only does 
this enforce one's abstraction and, hence, help manage the complexity of 
the problem space, but by localizing the design decisions made about as 
object, we reduce the scope of change upon the system.1 

This phenomena is very important. As history has shown, software 
maintenance costs associated with traditional designs have been very 
expensive, typically costing more than the original development costs. In 
some cases, maintenance over ten years or more has cost as much as 50 times 
more than the original software development costs. 

2.1.1 Establishing an Ada-Unique Design with SHARP 

To establish a SHARP representation of an Ada-unique design based upon 
principles of object-oriented design, a designer can consider the following 
factors: 

a. SHARP pictographs are introduced to represent Ada tasks 
declared in the main program to establish concurrently 
executing processes. 

b. High level SHARP abstracts are introduced to represent Ada 
packages and tasks that encapsulate the implementation of 
objects. The objects account for all software requirements 
assigned to each of the process tasks established in Step a. 

c. Intermediate level SHARP abstracts are introduced to repre- 
sent the structure of program units used to implement the 
internal complexities of an object implementation (i.e., the 
bodies of object tasks and program units visible in object 
packages). This structure is shown by SHARP Hierarchy and 
Invocation Diagrams. 

d. Low level SHARP abstracts are introduced to represent 
selective detail. These abstracts can be thought of as 
"blow ups" of entities identified in SHARP Invocation 
Diagrams (e.g., data flow between program units, data 
structures and task rendezvous). 

e. At the lowest level of design representation,  annotated 
pseudo code is used to represent certain detail in the 
bodies  of  program  units.   This  detail  accounts  for 
algorithms, logic, Ada exceptions, and Ada generic 
instantiation. 
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Item a. is discussed in Section 3.2 of Chapter 1. Item b. is discussed in 
Section 2 of Chapter IV. Items c. through e. are discussed in Section 2 of 
Chapter II. The remainder of this section provides an example of an 
Ada-unique design for the hypothetical restart/recovery process. Chapter 
IV describes the use of SHARP in conjunction with object-oriented design in 
more detail and presents a more complex example. 

2.1.2  Example of an Ada Design for High Maintainability 

In order to produce a highly maintainable object-oriented design, a 
designer decides to distribute the requirements for the restart/recovery 
process among three highly independent objects. He chooses to implement 
the objects using an Ada task and two Ada packages. 

The first object is to provide an interface with an operator. An Ada task 
is chosen to implement this object, since it can rendezvous with the 
operator's work station in order to receive operator commands and notify 
the operator of software status. 

The second object is to facilitate an abort of a transaction and establish 
a record of this event. An Ada package is chosen to encapsulate program 
units that implement this object. 

The third object is to facilitate restart of a transaction and establish a 
record of this event. An Ada package is chosen to encapsulate program 
units that implement this object. 

2.1.2a High Level Design Representation 

The Ada task and packages chosen by the designer are shown in Figure 48. 
Task AP_NOTIFY interacts with an operator's work station. An operator can 
(a) abort execution of an application program, which is implemented by 
Procedure ABORT_TRANS in Package P2; (b) restart an application program 
from a breakpoint, which is implemented by Procedure START_BKPT in Package 
P3; or (c) restart an application program from its beginning, which is 
implemented by Procedure START_BEG in Package P3. 

As shown in Figure 48, the object implementations can be considered as two 
layers of abstraction. Layer 1 consists of Task AP_NOTIFY. Layer 2 
consists of Package P2, named ABORT_HANDLER, and Package P3, named 
RECOVERY_HANDLER. The interaction of these object implementations is shown 
by the SHARP Invocation Diagram is Figure 49. 

Figures 48 and 49 are high level SHARP abstracts representing the designer's 
Ada-unique object-oriented design.  Hidden complexities of object implemen- 
tations are shown in intermediate and low level SHARP abstracts. 

2.1.2b  Intermediate Level Design Representation 

Figure 50 uses SHARP Invocation Diagrams to represent the structure of 
program units called in the bodies of Procedure ABORT_TRANS (the visible 
procedure in Package 2), Procedure START_BEG (the first visible procedure 
in Package 3). and Procedure START_BKPT (the second visible procedure in 
Package 3). 
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These diagrams are intermediate level SHARP abstracts. In large and com- 
plex computer programs, the bodies of program units visible in object tasks 
and packages may be complex. Accordingly, their design should typically be 
abstracted into understandable levels with constrained detail. Excluded 
detail is passed to the bodies of called program units. These bodies are, 
in turn, constrained to an easily understood amount of detail, with lower 
detail moved again to called program units. 

2.1.2c  Intermediate Level Design Representation 

At a yet lower level of design abstraction, pictorial options of SHARP can 
be used to represent selective detail. Figure 51 provides SHARP Data Flow 
Diagrams to establish parameters passed between Task AP_NOTIFY (Layer 1) 
visible program units declared in the specifications of Packages PI and P2 
(Layer 2). 

Figure 52 is a SHARP Task rendezvous Diagram representing a rendezvous 
between Task PROCESSINGJTRANS AND TASK AP_NOTIFY, and between the 
workstation and Task AP_NOTIFY. 

Figure 53 provides a set of Data Structure Diagrams showing the data 
structures established within Packages 2 and 3. 

2.1.2d Lowest Level Design Representation 

At the lowest level of design representation, SHARP junctions with 
traditional design representation techniques. Specifically, it utilizes 
annotated pseudo code to represent operations on variables and a glossary 
to define variables and other data structure detail. 

Figure 54 shows the pseudo code used to represent logic in the body of Task 
AP_NOTIFY and in the bodies of Procedures ABORT_TRANS, START_BEG and 
START_BKPT. 

2.2' DESIGN VARIATIONS 

2.2.1  Design for Execution Speed 

Various design options can be taken to increase execution speed. For 
example, since the most time consuming operation in the Ada language is 
task rendezvous, by limiting the use of tasks we gain speed of execution 
(and, as a by-product, simplify testing of Ada code). 

The designer decides to increase execution speed by implementing Object 1 
using procedures encapsulated in an Ada package, rather than Task 
AP_NOTIFY. Figure 55 shows his approach, where a procedure NOTIFY_OPERATOR 
has been established in a Package PI, named TRANS_HANDLER. 

As shown in Figure 56, NOTIFY_OPERATOR is called by Task PROCESSING_TRANS. 
The procedure call is faster than the original task rendezvous between Task 
PROCESSING_TRANS and the Layer 1 object implementation in Task AP_NOTIFY. 
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Package RECOVERY_HANDLER 
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1. RESTART_NUM 
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(b) Package RECOVERY_HANDLER 

FIGURE 53.     (CONCLUDED) 
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Begin pseudo code for Task AP_NOTIFY 

Receive operator command 
Establish TRANSID 
If TRANS ID-ABORT then   

call Procedure ABORTTRANS 
Receive and check STATUS to confirm 'abort* 
Inform operator of result 

Else if TRANS_ID - RESTART then <  
call Procedure START_BEG 
Receive and check STATUS to confirm 'restart' 
Inform operator of result 

Else if TRANSID - BREAKPOINT then   
call Procedure STARTBKPT 
Receive and check STATUS to confirm 

'restart from breakpoint' 
Inform operator of result 

Else notify operator of incorrect TRANS ID code 

end if 

End  pseudo  code   for  Task APNOTIFY 

(a)     PSEUDO CODE FOR TASK AP_NOTIFY (T1) 

Begin  pseudo code  for  Procedure  ABORT TRANS 

Receive   TRANS_ID 
Assess  TRANSID  to  establish  transaction  to  be  aborted 

To  abort   transaction 
Call   Procedure   FINDTRANS 
Call   Procedure   GET_TRANS 
Call   Procedure   LOCKTRANS 

To  record abort 
Call   Procedure  UPDATECTR 
Call   Procedure  UPDATE TABLE 

End  pseudo  code   for  Procedure  ABORT_TRANS 

(b)     PSEUDO CODE FOR PROCEDURE ABORT   TRANS (P2) 

FIGURE 54.    SHARP LOWEST LEVEL ABSTRACTION 
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Begin pseudo code for Procedure START BEG 

Receive TRANSID 
Assess TRANS_ID to establish transaction to be restarted 

To restart transaction 
Call Procedure BEG 

To record restart 
Call Procedure UPDATECTR 
Call Procedure UPDATE TABLE 

End pseudo code for Procedure START BEG 

(c)     PSEUDO CODE FOR PROCEDURE START_BEG (P3> 

Begin pseudo code for Procedure START_BKPT 

Receive TRANS ID 

Assess TRANS_ID to establish transaction to be 
restarted from a breakpoint 

Establish location of breakpoint 

To restart transaction from breakpoint 
Call Procedure BKPT 

To record restart from breakpoint 
Call Procedure UPDATECTR 
Call Procedure UPDATETABLE 

End pseudo code for Procedure STARTBKPT 

(d)     PSEUDO CODE FOR PROCEDURE START_BKPT (P3) 

FIGURE 54.     (CONCLUDED) 
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With this design, Task PROCESSING_TRANS has been assigned the responsibil- 
ity of interacting with the operator's work station through on Ada task 
rendezvous. Otherwise, the implementation of Object 1 internal detail is 
essentially the same using a package as it was using a task. 

2.2.2  Design Subject to Memory Constraint 

There may be times when a military system must be designed with some limi- 
tation on the availability of memory. Although the latest advancements in 
hardware have made commercial memory inexpensive and extensively available, 
this is not necessarily the case with a defense system. The cost of 
"ruggedized" memory chips used in defense systems is much greater than the 
commercial counterpart. Also, since space in a military system is often 
limited, the physical space constraint can limit the amount of memory 
available.  This is especially true in avionics systems. 

In order to save memory in the implementation of the restart/recovery 
process, the designer decides to establish common Ada program units. 
Figure 57 shows his approach, where Procedures UPDATE_CTR and GEN_TABLE 
have been removed from Packages P2 and P3 and inserted into a Package 4, 
named R_R_SERVICES. 

These procedures establish a record of the transaction abort or restart. 
Specifically, Procedure UPDATE_CTR updates variables containing transaction 
status (i.e., aborted or restarted from the beginning or a breakpoint). 
Procedure UPDATE_TABLE tracks all transactions, keeping a record of active, 
halted and inactive transactions. 

This design variation saves memory by establishing the package of common 
program units. However, the implementation of Object 2 in Package 2 and 
Objects 3 in Package 3 is no longer completely independent of each other, 
since they are now coupled through the use of common program units in 
Package P4, as shown in Figure 58. 

3    CHAPTER SUMMARY 

SHARP establishes a set of pictorial abstracts that can be used to repre- 
sent an object-oriented design for an Ada computer program. With such a 
design, we can localize design complexity, thus reducing interdependence 
relationships and thereby facilitating cost effective software maintenance. 

In the past, large global sets of parameters and routines were extensively 
shared. If any one of the global variables or routines were modified, a 
"domino effect" was introduced in that the change affected several differ- 
ent parts of the computer program. Seemingly innocent changes caused 
traumatic problems. By segmenting a program into objects, and constraining 
the interface between the objects, software maintenance becomes a simpler 
and less expensive problem. This is important to the Air Force since 
historically software maintenance costs have been very high. 

In practice, a designer of a large and complex Ada computer program may 
have to face certain design constraints as he develops his object-oriented 
design.  For example, certain objects may have execution speed constraints 

114 



Layer 1 

NOTIFY. 
OPERATOR 

(a) Package TRANS.HANDLER P1 

•ED 

ABORT. 
TRANS 

START. 
BEG 

START_ 
BKPT 

(b)  Package ABORT_HANDLER       P2 

Layer 2 

(c) Package RECOVERY^HANDLER 
P* 

UPDATE 
CTR 

- GEN_ 
TABLE 

(d) Package R_R_SERVICES P4 

Layer 3 

FIGURE  57.   LAYERS OF PACKAGES (DESIGN FOR LIMITED MEMORY) 

115 



ABORT. 
TRANS 

P2 

MAIN 

•h ±r 

WORK 
STATION 

S • 

PROCESSING 
-TRANS 

7 
j 

11 
— 

NOTIFY. 
OPERATOR 
/ 

UPDATE, 
CTR 

GEN_ 
TABLE 

P3 

P4 

FIGURE 58.    PACKAGE INTERACTION (DESIGN FOR LIMITED MEMORY) 

116 



while others may have memory constraints. These constraints may have to be 
introduced at the expense of some of the power of the object-oriented 
design (e.g., a compromise to the extent of object independence may have to 
be introduced). Therefore, the final form of the object-oriented design 
may be affected by design goals conflicting to some extent with the goals 
of an object-oriented design with high maintainability. 

Whatever the design goals are, the ultimate design can be effectively 
represented by SHARP abstracts. At the highest level of the design, the 
abstracts represent Ada packages introduced to encapsulate objects or sets 
of objects. The interaction of the objects is represented by SHARP 
invocation diagrams, and the bodies of program units responsible for 
communication between objects, visible within each task or package encap- 
sulating an object, can be represented by the SHARP Hierarchy and Invoca- 
tion Diagrams. Abstracts envisioned as "blow ups" of entities identified 
in an invocation diagram can be used to represent details of task rendez- 
vous, data flow between program units and data structures. The later 
diagram shows information hiding within data structures local to objects. 
At the lowest level of SHARP, annotated pseudo code is used to represent 
operations and logic within the bodies of individual units. 
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CHAPTER IV 

Steps for an Object-Oriented Ada-Unique Design 

This chapter presents steps that can be used to design an Ada computer 
program using principles of object-oriented design. It provides an example 
of applying the steps to develop and represent the design using SHARP. 

1 INTRODUCTION 

1.1 BACKGROUND 

Projections for the amount of software to be implemented using Ada are very 
large and will incur a high acquisition cost if developed using traditional 
methods. The high cost, and typical schedule slippage of software develop- 
ment efforts in the past, can be attributed to several factors, including 
the effect of complex dependency relationships between types, variables and 
program units. However, as we have indicated, dependency relationships can 
be controlled using Ada-unique object-oriented techniques, since loosely 
coupled Ada packages and tasks can be developed and tested largely independ- 
ently. 

Given the size and complexity of projected software systems, the government 
software review process, and the large development teams, there is a need 
for representing a software design in an understandable and abstracted 
manner. 

1.2 CHAPTER SCOPE 

In this chapter, selective detail of an Ada-unique object-oriented design 
is presented for a command and control computer program of a hypothetical 
space station. The use of each level of SHARP abstracts is demonstrated in 
representing the design of the command and control computer program. 

Section 2 presents a set of steps that can be used to establish the design 
of a large and complex computer program to be implemented using Ada. 
Section 3 presents SHARP abstracts that document the results of the steps 
when applied to represent the design of the command and control computer 
program. 

2 OBJECT-ORIENTED ADA DESIGN 

2.1  INTRODUCTION 

When using object-oriented design techniques during software development, 
the requirements for a large computer program are distributed among objects. 
The implementation of each object has a unique set of operations and a 
local state defined in a data structure. The unique operations are known 
only to the object implementation. Access to an object implementation can 
only be made via calls to program units in packages or entry points to 
tasks introduced to implement the object. 
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As described in Chapter II, the implementations of objects hide information 
about their internal representation and in a sense, mimic real world 
objects, such as telephones. Such real world objects present a small num- 
ber of basic operations that can be performed on them (e.g., dial number, 
answer, hang up) and hide the relatively complex details of their implemen- 
tation. Since the objects are essentially independent of each other, one 
object implementation can be modified without affecting a second. For 
example, one telephone receiver can be modified or replaced without 
affecting others. 

In Ada, packages and tasks are important to the implementation of object- 
oriented designs. For example, information hidden within a package limits 
dependency relationships between objects. Only parameters declared in 
program units, contained within the specification of a package, can be 
passed from one package to another. 

2.2  STEPS FOR ESTABLISHING AN OBJECT-ORIENTED DESIGN 

A software engineer must take a series of steps to establish the design of 
a large and complex computer program. A basic set of steps that take 
into account principles of object-oriented and structured top-down design, 
and the SHARP graphics used in conjunction with each step, are summarized 
in the following paragraphs. 

2.2.1 Step 1 - Establish Processes 

For a given set of software requirements, in Step 1 we identify processes 
needed to establish concurrent processing threads referred to as 
processes, and we assign requirements to each process as appropriate. With 
Ada, each process can be established by a task declared in the main program, 
as illustrated by the SHARP pictographs shown in Figure 59. As discussed 
in Chapter I, processes consist of abstracted threads of program units 
needed to service user requests from work stations and other hardware 
interfaces (e.g., communication links); and to perform processing 
automatically initiated on a periodic or some other basis. 

2.2.2 Step 2 - Establish Objects for Each Process 

In Step 2, we identify objects specified in the requirements assigned to 
each process. With respect to computer programs, an object is a system 
component implemented in software using a set of operations unique to it 
and a local data structure not accessible by entities external to it. With 
Ada, objects can be implemented by tasks, or by packages as illustrated in 
Figure 60. 

For each process, objects will account for data reception, storage, 
manipulation and output. Data reception objects might be protocol managers, 
command interpreters, message handlers, sensor monitors, and external 
device data receivers. Data storage objects •might be file or data base 
managers. Data manipulation objects might be controllers, planners, 
operations managers, trackers, detectors, and testers. Data output objects 
might be display, tape or hard copy data generators, as well as data 
exporters to communication links, distributed processors or other hardware 
devices. 
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FIGURE 59.   STEP 1 - ESTABLISH PROCESSES 

FIGURE  60.   STEP 2 - ESTABLISH OBJECTS FOR EACH PROCESS 
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An experienced designer will group together requirements for each of the 
identified objects. As the designer makes these groupings, he will keep in 
mind that each object should be implemented with unique operations, and a 
local hidden data structure of variables and constants needed to facilitate 
the unique operations. He will also keep in mind that (a) the object's 
local hidden data structure should not overlap with a visible data 
structure that facilitates interobject communication; (b) the character- 
istics of the requirements should be consistent (e.g., requirements for 
data base management should not be mixed with requirements for such things 
as statistical processing and display); and (c) the requirements assigned 
to an object should be constrained, to the extent possible, so that the 
implementation of the object is relatively easy to understand, implement, 
compile and test. 

Less experienced designers might use a more mechanical approach suggested 
by Booch, where nouns in the software requirements specification are 
candidate objects and verbs identify operations on the objects. This 
approach to object identification is described in detail in Section 3.3 of 

/       an Object Oriented Design Handbook for Ada Software 7 

2.2.3 Step 3 - Establish Interfaces Between Objects 

In Step 3, we establish parameters to be passed between the implementation 
of objects and the program units to be used to facilitate the parameter 
passing, as illustrated in the first part of Figure 61. With Ada, proce- 
dures and tasks declared in the specification of an object package can be 
used to facilitate such parameter passing, as illustrated by the SHARP 
Invocation diagram in the second part of Figure 61. As shown, the packages 
can be grouped into layers in an hierarchical manner, for clarity and ease 
of testing. 

As a general rule, parameters used in the formulation of object implementa- 
tions should not be passed between the implementations, which would couple 
the implementations. If they have to be passed, they should be made 
private or limited private. In this way, the receiving object package has 
limited use of the passed parameters. For example, if the parameter is 
private, the user is excluded from applying operations on the parameter 
other than those operations defined within the package specification. The 
only exception to this rule is assignment and tests for equality. If the 
parameter is limited private, assignments and tests for equality are no 
longer automatically available. 

2.2.4 Step 4 -   Establish Hidden Internal Design of Each Object 

2.2.4a Establish Internal Structure of Each Object Implementation 

In Step 4, we establish the structure for the internal complexities of an 
object implementation using a traditional structured/top-down approach and 
abstraction of detail  into levels.  For example, a relatively small and 
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easily comprehended portion of detail can be implemented at one level, with 
the remainder of the detail implemented in called program units at lower 
levels. At each lower level, the abstraction process is repeated. With 
Ada, a controlling structure of subprograms and tasks can be assigned to 
the levels, and packages (e.g., containing existing or common program 
units) can be accessed by the subprograms and tasks using the Ada "with" 
clause, as illustrated by the SHARP Hierarchy Diagram in Item a of Figure 
62 and the SHARP Invocation Diagram in Item b. 

2.2.4b Establish Data Flow Between Program Units Internal to Each 
Object Implementation 

In Step 4, we also establish the details of interaction between the 
internal program units defined in Substep 4a. With Ada, calls are made to 
pass parameters from one subprogram to another, as illustrated by the SHARP 
Subprogram Data Flow Diagram shown in Item a of Figure 63; and with Ada, 
task rendezvous is introduced for passing parameters from one task to 
another, as illustrated by the SHARP Task Rendezvous Diagram shown in Item 
b of Figure 63. 

2.2.4c Establish Annotated Pseudo Code for Program Unit Bodies 

For internal program units used to implement an object, in Step 4 we 
furthermore establish processing to be undertaken in the bodies of these 
program units, including the algorithms, operations on variables, deci- 
sions, generic instantiations, exceptions, high-level and low-level I/O, 
decisions and other logic. We represent this information in annotated 
pseudo code. For example, Figure 64 shows pseudo code that could be used 
to represent the body of an Ada procedure. 

2.2.4d  Establish Data Structure of Each Object Implementation 

To complete Step 4, we establish the data structures for each object 
implementation. Figure 65 illustrates the definition of types, variables 
and constants for an object implemented within an Ada package. As shown, 
passed parameters are declared in a visible data structure, while variables 
used to facilitate operations unique to the object implementation are 
hidden in the local data structure. 

With SHARP an integer type is represented by an upright narrow rectangle 
with the letter "I" underneath it; a real type with the letters "RL"; and 
a enumeration type with the letters "EN." Furthermore, with SHARP an array 
type is represented by an upright narrow rectangle with the letters "AR" 
underneath it; a record type with the letter "R," underneath it; a discrimi- 
nated type with the letter "D;" and a task type with the letters "T." 

The type of a variable or constant is represented by the first letter of a 
predefined type (e.g., I for INTEGER); and by the letter "T" followed by 
the type glossary number (e.g., T2 for the 2nd type) for a defined type. 
See Section 2.4.4 of Chapter II for a detailed discussion of SHARP Data 
Structure Diagrams. 
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Begin Procedure SOFT_DEV_ESTIMATE 

*SS - 0 

for 0 - 1, 2, ... 0(p) 

#DATA - # TYPES (p,o) + #CONSTS(p,o) + #VARS(p.o) 

ttPCALL - #SUBCALL(p,o) + »TASKS(p,o) 

#PBOD - *INSPECT_COUNT(p,o) 

DSI(p.o) - #DATA + #PCALL + #PBOD 

<*SS -  *SS + DSI(p.o) 

end 1 nop 

end loop 

if LANGUAGE - FORTRAN Chen 

*SS - #SS*FORTRAN_CALIBRATE 

else if LANGUAGE - JOVIAL Chen 

sSS c #SS*JOVIAL_CALIBRATE _ 

else if LANCUAGE_ASSEMBLY Chen 

*SS - #SS*ASSEMBLY_CALIBRATE 

else 

*SS - «SS*ADA_CALIBRATE   

end if  

raise   excepcion 

if  *SS-2000 

© 

FIGURE 64.     STEP 4 - ESTABLISH ANNOTATED PSEUDO CODE FOR PROGRAM UNIT BODIES 

129 



case COCOM_MODE is 

when ORGANIC -> 

0 
K - 2.U 

E - 1.05 

when SEMI_DETACHED -> 

K - 3.0 

E - 1.12 

when EMBEDDED -> 

K - 3.6 

E - 1.2 

I case 

Call Procedure COST ESTIMATE 

Call Generic Procedure SCHEDULE_ESTIMATE .. 

where 

KCEN - K 

EGEN - E 

excepcion handler 

Call Procedure MODULE_ESTIMATE 

end exception handler   

Package   P10 

End   Procedure   SOFT  DEV  ESTIMATE 

FIGURE 64.      (CONCLUDED) 
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2.2.5  Step 5 - Refine the Design 

Tn Step 5, we check the design for consistency and correctness. For 
example, we compare parameters passed between program units to those 
defined In the data structure diagram. We also check to make sure the 
implementation of each object is relatively easy to understand, implement, 
compile and test. For example, we could estimate the number of Ada source 
statements required to implement each object, using the algorithms defined 
in Chapter VI. We then could calculate the approximate time to compile 
each object implementation. For each object that is too large (and 
therefore, takes too long to compile), we would partition it into a set of 
sub-object implementations as illustrated in Items a and b of Figure 66. 
Then we would repeat Steps 3 and 4 for the group of sub-object 
implementations. The sub-objects would be used to construct the original 
object (i.e., small objects can be used to build large objects) or would be 
used to replace the original object, as illustrated in Item c of Figure 66. 

3   EXAMPLE 

3.1 INTRODUCTION 

In this section, we apply the software design steps described in Section 2 
to establish an Ada-unique design for the command and control software 
associated with the hypothetical earth orbiting space station. As 
specified in Appendix D, the software provides capabilities to (a) collect 
and process experimental data, (b) monitor sensors, (c) orient solar 
panels, and (d) perform built in tests of system processing hardware. 

3.2 ESTABLISHING PROCESSES (STEP 1) 

The first step in the design of a large and complex computer program is to 
identify the top level concurrent processing threads needed to implement 
software requirements. In the space station example, three processes can 
be established to implement the following software requirements: 

1) The collecting, processing and statistical display of 
experimental data, as commanded by work station called 
i||f.'J<i| .-'. 

2) The check of environmental status and system processing 
hardware fitness on a periodic basic, where the results are 
reported to the operator console at a work station called WS 

3) The orientation of solar panels as commanded by earth 
mission centers. 

These processes are implemented by Ada tasks declared in the main subpro- 
gram. The SHARP diagram shown in Figure 67 graphically presents the 
results of this initial design step. 

Ideally the processes are loosely coupled with little or no communication 
between the implementing tasks. This allows largely independent develop- 
ment of the system requirements assigned to the top level tasks. This goal 
is met in the design to follow in that the three processes do not 

interact. 
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3.3  ESTABLISHING OBJECTS FOR EACH PROCESS (STEP 2) 

3.3.1  Objects for the Experimental Data Collection and Reduction Process 

The 'Experiment Data Collection and Reduction' process collects data from 
three experiments, stores data samples in a data base and provides inter- 
active access to the data base via work station MICRO_A. At the work 
station, the operator can view available data samples, command the display 
of statistical averages for a specific data sample, and command the display 
of a normal distribution or poisson distribution of the sample. 

The objects needed to implement these requirements are presented in Figure 
68.  The objects are as follows: 

a. Experiment Data Collection, which is implemented by program 
units contained within Package EXP_PL1_A. It contains three 
visible tasks that assemble data samples (one for each of 
the three different experiments) by receiving sensor 
readings during rendezvous with experiment hardware data 
ports. The readings are grouped in lists of designated 
sizes.  Each list is referred to as a data sample. 

b. Data Base, which is implemented by program units contained 
within Package EXP_PL2_A. It contains Task RECORD_DATA, 
which receives data samples from the Experiment Data 
Collection object and stores them by sample and sensor 
identification numbers. If local memory is full, the data 
samples for that experiment are archived in mass memory. 
Procedure GET_RECORD is provided to access data samples. 

c. Command Coordinator, which is implemented by the package 
EXP_PL1_B. This object responds to input commands received 
from the work station at microprocessor MICRO_A. It 
accesses data via the Data Base object to retrieve a 
specific data sample for viewing, or subsequent statistical 
processing. It also can respond to user commands to list 
the identifiers of experiment data samples. 

d. Statistical  Distribution,  which  is  implemented  by  the 
package EXP_PL2_B.  It is used to establish a data sample's 
mean, standard deviation, and normal or poisson distribu- 
tion.  This object uses math functions contained in Package 
EXP_PL3_A.  The results of its calculations are presented 
on the screen of work station MICRO_A. 

3.3.2  Objects for the Station Monitor Process 

The 'Station Monitor' process periodically takes power, temperature and 
pressure readings from space station sensors. A range of acceptable 
readings are either input by the operator or are automatically established 
(i.e., default values). If a reading is out of bounds, an alarm message is 
displayed at the work station. A record is made of sensor readings and 
alarm messages. 
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FIGURE 68.    OBJECT IMPLEMENTATIONS IN PROCESS TASK 
"EXPERIMENT   DATA   COLLECTION" (STEP2) 
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In addition, a built-in-test is periodically run to check the fitness of 
the selected system hardware. Messages indicating detected errors are 
displayed at the work station. 

The objects needed to implement these requirements are represented in 
Figure 69.  The objects are as follows: 

a. Environmental Sensors, which is implemented by the package 
M_PL1_A. It contains three tasks that rendezvous with 
environmental sensor hardware to obtain values for power, 
temperature and pressure. The values are passed to the 
sensor processing package M_PL2_A. 

b. Sensor Processing, which is implemented by the package 
M_PL2_A. It contains a task to receive and record sensor 
values. A check sensor procedure is invoked to determine if 
the sensor value is in an acceptable range. If a reading is 
out of bounds, program units in the alarm package are 
invoked, an alarm is generated at the work station WS and 
the alarm is recorded in mass storage. 

c. Alarm, which is implemented by the package M_PL3_A. Program 
units within it are invoked when the Sensor Processing 
package detects an out of bound sensor condition. An alarm 
message is generated at the work station WS and the alarm is 
recorded in mass storage. 

d. Command Processor, which is implemented by the package 
M_PL1_B. It is invoked by the Task STATION_MONITOR and 
accepts a user command made at Work Station WS to set a 
range of acceptable sensor values. Task CMD invokes the 
Procedure SET_LIMITS in the sensor processing package to 
update the acceptable sensor ranges. 

e. Built-in-Test, which is implemented by the package M_PL1_C. 
It contains the Task BIT, which periodically checks the 
functioning of the central processor by executing a series 
of Ada instructions. Unexpected results are reported to the 
work station WS as processor error conditions. 

3.3.3  Objects for the Solar Panel Orientation Process 

THE 'Solar Panel Orientation' process controls the orientation of the 
solar panel. An earth/satellite communication link provides two-way data 
transmission between earth and the space station. The current solar panel 
orientation is transmitted to earth and the earth mission centers transmit 
directional data to the station to give the desired new orientation. 
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The objects needed to implement these requirements are presented in Figure 
70.  The objects are as follows: 

a. Update Orientation, which is implemented by the package 
SP_PL1_A. It receives directional data via rendezvous with 
radio data link hardware. A new orientation is calculated 
using the math package SP_PL2_A and is passed to the panel 
arm motion package that uses the old and new orientation to 
calculate and implement motions to orient the solar panel. 
The new orientation is then sent to the solar panel task for 
transmission to earth. 

b. Math Package, which is implemented by the package SP_PL2_A. 
It contains mathematical functions needed for calculating 
the new solar panel orientation. 

c. Panel Arm Motion, which is implemented by the package 
SP_PL2_B. It uses the old and new orientation to calculate 
solar panel arm motions needed to reorient the solar panel. 
The panel mount motors package is invoked to generate the 
required motions. 

d. Panel Motors, which is implemented by the package SP_PL3_B. 
Procedures M0T0R1 and M0T0R2, visible procedures within this 
package are invoked by Procedure PANEL_ARM_DELTAS of the 
panel arm motion package. In this way, the required panel 
motions are obtained using two controlling motors. A 
library package M0T0R_I0 encapsulates access to low level 
control functionally needed for operating the hardware. 

3.4  ESTABLISHING INTERFACES BETWEEN OBJECTS (STEP 3) 

This section establishes the interfaces between objects of the Experiment 
Data Collection and Reduction Process. An invocation diagram for these 
object implementations process is presented in Figure 71. The calling 
dependencies of the visible procedures in the object packages are repre- 
sented along with task interactions. 

In Figure 72, a SHARP task rendezvous diagram shows data flow between 
hardware and the 'Experiment Data Collection' object implementation, and 
data flow between the later and the 'Data Base' object implementation. 
Figure 73 shows data flow between the 'Command Coordinator' object imple- 
mentation and both the 'Data Base' and 'Statistical Distribution' object 
implementation. The parameter passing is used to assemble the experiment 
data base, access that data base, and establish statistical distributions 
for data selected by an operator. Parameters passed account for operator 
commands and the results of statistical calculations. Variables and flags 
used to implement the operations unique to each object implementation 
(e.g., the statistical calculations) are not passed. Because of this, the 
object implementations are decoupled. 
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FIGURE 70.    OBJECT IMPLEMENTATIONS IN PROCESS 
TASK "SOLAR   PANEL" (STEP 2) 
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EXPERIMENT   DATA   COLLECTION 

<> COMMAND 

1 
CMD CMD 

REQUEST 

SAMPLE_VALUES 

SAMPLE      IDS 

T 

GET   RECORD 

DISTRIBUTION_KIND 

SAMPLE_VALUES 

MEAN 

STD_DEV 

DISTRIBUTION   VALUES 

STAT   AV 

FIGURE 73.   DATA FLOW BETWEEN OBJECT COMMUNICATING SUBPROGRAMS 
(STEP 3) 

144 



3.5  COMMENCE DESIGN OF OBJECT IMPLEMENTATIONS (STEP 4) 

3.5.1  Experiment Data Collection Object Implementation (Package EXP_PL1_A) 

The 'Experiment Data Collection' object, which is implemented by a Package 
EXP_PL1_A, contains three visible communicating tasks that rendezvous with 
experiment hardware and build lists of experimental values, which are 
referred to as samples. For a communicating task the hierarchy diagram is 
shown in Item a of Figure 74, a data flow diagram is presented in Item b, 
and annotated pseudo code is presented in Item c. These SHARP abstracts 
commence the internal design of the 'Experiment Data Collection' object 
implementation. With them, an initial version of the object's data struc- 
ture can be established as shown in Item d. 

(n • 1,2,3) 

LAST   POINTER   n 

APPEND    LISTn APPEND    LISTn 

(a)   INVOCAI ION UIAI.IIAM (b)   DAIftl IDWIHAiiMAM 

FIGURE 74.    INTERNAL DESIGN OF THE 'EXPERIMENT DATA COLLECTION- 
OBJECT (STEP 4) 
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Begin pseudo code for Task EXP_n   

initialize variables including SAMPLE_ID_n =1 

loop . 

for i - 1 to SAMPLE_SIZE 

rendezvous with sensor to receive 
current sensor reading VAL_n 

CALL APPEND_LISTn to enter sensor reading into a linked list 

end for     
We now have a list consisting of 'SAMPLE_SIZE' 
sensor readings, which shall be referred to as a sample. 

Call Entry Point RDI of Task RECORD_DATA      -Package EXP_PL2-A 
to pass the sample to the data base object'- 

implementation along with its identifi- 
cation number 

SAMPLE_ID_n - SAMPLE_ID_n+l 

end loop   

End pseudo  code  for Task EXP_n 

(c)  PSEUDOCODE FOR THE BODY OF TASK'EXP   1' 

FIGURE 74.      (CONTINUED) 
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/// 
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TYPES 
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1.   SAMPLE_SIZE (1000) 

VARIABLES 

1. SAMPLE ID) 
2    SAMPLE_ID_2 
3. SAMPLEID3 
4. POINTER1 
5. POINTER_2 

6. POINTER_3 
7. LAST_POINTER_1 

8. LASTPOINTER2 
9. LAST   POINTER   3 

(d)  DATA STRUCTURE DIAGRAM 

FIGURE 74.      (CONCLUDED) 
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3.5.2  Data Base Object Implementation (Package EXP_PL2_A) 

The 'Data Base' object, which is implemented by Package EXP_PL2_A, contain;; 
two visible program units. The first, Task RECORD_DATA, establishes a dald 
base containing the experimental data. The data is stored by an experiment 
identifier and by a data sample identifier in local memory. The second 
visible procedure in Package EXP_PL2_A, Procedure GET_RECORD, retrieves 
specific data samples for a specific experiment from the data base. It 
searches the data base to find a given experiment and specific samples for 
that experiment. 

For the communicating program unit 'Task RECORD_DATA', a hierarchy diagrams 
is shown in Item a of Figure 75, a data flow diagram is presented in Item 
c. Annotated pseudo code for communicating task RECORD_DATA is shown in 
Item c, and Procedure GET_RECORD' is shown in Item d. These abstracts 
commence the internal design of the 'Data Base' object implementation. 
With them, an initial version of the object's data structure can be 
established as shown in Item e. 

RECORD   DATA 

SAMPLE_VALUES 

SENSOR_NUMBER 

SAMPLE   ID 

ENTER   IN   DATABASE ENTER   IN   DATABASE 

(a)   INVOCATION DIAGRAM (b)   DATA FLOW DIAGRAM 

FIGURE 75.      INTERNAL DESIGN OF THE 'DATA BASE' OBJECT (STEP 4) 
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Begin pseudo code for Task RECORD_DATA 

initialize counters and pointers 

loop  

raise exception 

if data base is currently being 
accessed by Procedure CMD I Package EXP_PL1_B 

if call to entry Point RD1 then 

Consummate rendezvous with Task EXP_1 
to receive a sample and the samples 
identification number 

Package EXP_PL1_A 

Elsi f call to Entry Point RD2 

Consummate rendezvous wi 
to receive a sample and 
identification number 

th 

th 
the 

en 

Task EXP_ 
samples 

2  Package EXP_ PL1 A 

Else call to Entry Point RD3 

Consummate rendezvous wi 
to receive a sample and 
identification number _ 

the 

th 
the 

n 

Task EXP_ 
samples 

1 Package EXP PL1 A 

end if 

Call ENTER_IN_DATABASE- to enter sample into data base 
keyed on Sensor number and sample identification number 

Check to see if memory allocated to sample storage is 
full.  If so, write data base to disk and clear the data 
base memory. 

exception handler 

do not consummate rendezvous 
while data base is being accessed 

end   ____ 
end  loop 
End pseudo  code   for Task RECORD_DATA 

(c)  PSEUDO CODE FOR THE BODY OF TASK 'RECORDDATA' 

FIGURE 75.      (CONTINUED) 
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Begin pseudo code for Procedure GET_RECORD 

Receive command from Procedure CMD- Package EXP_PL1_B 

if REQUEST = SAMPLE_VALUE_REQUEST then 

Fetch and return set of sensor readings for designated 
sample by its sensor number and sample 
identification number ______^__________^____ 

elsif REQUEST - SAMPLE_IDS_REQUEST then 

Fetch and return list of sample identification 
numbers for the designated sensor  

Else establish error message for incorrect REQUEST 

end if   

End pseudo code for Procedure GET_RECORD 

(d) PSUEDO CODE FOR THE BODY OF PROCEDURE'GET RECORD- 

FIGURE 75.  (CONTINUED) 
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(e)    DATA STRUCTURE DIAGRAM 

FIGURE 75.     (CONCLUDED) 
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3.5.3  Command Coordinator Object Implementation (Package EXP_PL2_A) 

The 'Command Coordinator' object, which is implemented by Package 
EXP_PL2_A, contains the visible Procedure CMD. It receives and interprets 
instructions from the system operator via the top level process task (i.e., 
Task EXPERIMENT_DATA_COLLECTION). It accesses Procedure GET_RECORD of the 
Data Base object to obtain an experimental sample from the data base. It 
calls procedures of the 'Statistical Distribution' object to establish a 
requested distribution for a data sample retrieved from the data base. 
Procedure CMD can also call Procedure DISPLAY to establish for display at 
the work station MICRO_A: (a) a list of sample identifiers for a particular 
experiment or (b) the data values for a particular sample of a particular 
experiment. 

For the communicating program unit 'Procedure CMD,' a hierarchy diagram is 
shown in Item a of Figure 76, a data flow diagram is presented in Item b, 
and annotated pseudo code is presented in Item c. These abstracts commence 
the internal design of the Command Coordinator Object implementation. With 
them, an initial version if the object's data structure can be established 
as shown in Item d. 

CMD 

GET RECORD DISPLAY STAT_AV 

EXP_PL2_A EXP_PL2_B 

LIST_SAMPLE_IDS   LIST_SAMPLE_ VALUES 

(a) INVOCATION DIAGRAM 

FIGURE 76. INTERNAL DESIGN OF THE 'COMMAND 
COORDINATOR' OBJECT (STEP 4) 

152 



i 

Q. 

1 
a. 
X 
LU 

CO 
LU 

a 
0 

> 
< 

i 

< 
i- 
co 

> 
LU 

Q 
1 

a 
H 
CO 

3 
< 
> 

1 
Z 
C 
H 
3 
5 
cr 
t- 
CO 

• 

Q 

s 
1 

Z 
O 
h 
3 
CQ 

cr 
h- 
co 

z   > 
<     LU 
LU      Q 

5           1 
Q 
t- 
CO 

CO 

z 

1 
z 

CO 
LU 

D 
_l 

LU 

n 
< 

a 
\- 

< 
> 

1 
LU 
-J 
0. 

< 

> 
I 

z 
o 
H 
3 
m 
cr 

>- 
< 
Q. 
to 
Q 

Z 
< 
LU 

5 

E 
V- 
v> 
a 

z 
o 

5i -I ct 
CO   CO 

o a 
co 

CO 
LU 

D 

oo 
LU 

3 
CO 

a 

a Q 
1 

LLI 

< > 
i 

Lt 
1 

LU 

> 
< 
a. 
to 

o 
CO 

Z 
CL 

z 
_J 
Q. 

5 
LU < < 
CO CO CO 

a 

1 
LU    CO 

,_l  "J 
la. 3 

*~ 5 -1 

2 < « 
_l   CO   > 

z 
o 

CO 
LU 

3 
_l 
< 
> 

I 
Z 
o 

— — > — > 
LU 

f 
3 
CD 

3 
00 

Q O 
1 

E 
1 

LU 
1 

LU 
1 

LU 1 1 
O 
co 
Z 

-I 
a. Q. 

> 
Z 
< 

Q 
1 

Q 
ct a. > 

< 
E 
O 
CO 

LU 
-I 
a. 

a LU 3 3 < 1- -1 Z s 
CO CO CO CO *? co CJ o a. LU < 

2 CO CO CO 

O Q 

L
IS

T
_

 
S

A
M

P
LE

_ 
ID

S
 

00 
5 
< 
cr 
a 
< 
c 
g 
o 
-I 
LL 

< 
< 
Q 

3 
2 

8 
LO 

UJ 
cr 
D 

-,   Q 
rr 
O 

LU 
1 

CO a. 
z > 
LU < 
CO CO 

< 
> 

CO 

a 

111 LU 
-1 _l 
a a 
> >. 
3 < 
CO CO 

-•-•- 

153 



Begin pseudo code for Procedure CMD 

Receive command from Process Task EXPERIMENT_DATA_COLLECTION 

If COMMAND - SAMPLE VALUE REQUEST then 

EXP PL2-A Call Procedure GET_RECORD   
to fetch a sample as a 
function of sensor number and sample identification number 

Call Procedure DISPLAY to display 
the set of sensor readings for the 
requested sample    , , 

elsif COMMAND - SAMPLE IDS REQUEST then 

EXP PL2-A Call Procedure GET_RECORD  
to fetch list of sample 
identification numbers as a function 
of sensor number 

Call Procedure DISPLAY to display 
sample identification numbers for the 
designated sensor 

elsif COMMAND = STATISTICAL REQUEST  then 

Call Procedure GET_RECORD  
to fetch sensor readings for the 
designated sample 

EXP PL2 A 

J EXP PL3 A Call Procedure STAT_AV_   
to establish the mean, standard1- 

deviation, and normal or poisson 
distribution for the designated sample 

Call Procedure DISPLAY to display the 
statistical distribution, the mean and 
the standard deviation 

Else generate error message incorrect command. 

end if   

End pseudo code for Procedure CMD    

1 

(c)   PSEUDO CODE FOR THE BODY OF PROCEDURE 'CMD' 

FIGURE 76.      (CONTINUED) 
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3.5.4  Statistical Distributions Object Implementation (Package EXP_PL2_B) 

The 'Statistical Distributions' object, which is implemented by Package 
EXP_PL2_B, contains a visible procedure STAT_AV. It calculates the average 
and standard deviation of a received data sample. These results are then 
used to calculate a sample's normal or poisson distribution. This package 
accesses mathematical functions of a math package. 

For the communicating program unit 'Procedure STAT_AV,' a hierarchy diagram 
is shown in Item a of Figure 77, a data flow diagram is presented in Item 
b, and annotated pseudo code is presented in Item c. These abstracts 
commence the internal design of the Statistical Distributions Object 
implementation. With them, an initial version of the object's data 
structure can be established as shown in Item d. 

STAT_AV 

SQRT NORMAL POISSON 

EXP_PL3A 

E_X FACTORIAL 

EXP_PL3A 

(a) INVOCATION DIAGRAM 

FIGURE 77. INTERNAL DESIGN OF THE 'STATISTICAL 
DISTRIBUTION' OBJECT (STEP 4) 
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POISSON   DISTRIBUTION 
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VARIABLE   X PARAMETER 

(b)   DATA FLOW DIAGRAMS 

FIGURE 77.   (CONTINUED) 
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Begin pseudo code for Procedure STAT_AV 

Receive sample's set of sensor readings and the 
indication of the requested distribution 

Calculate mean for sample 
Calculate variance for sample 

Call Procedure SQRT   
to calculate square root of 
the variance (standard deviation) 

if DISTRIBUTIONJCIND - NORMAL then 

Call Procedure NORMAL to establish 
normal distribution   

Package EXP_PL3A 

elsif DISTRIBUTIONJCIND - POISSON then 

Call Procedure POISSON to establish 
poisson distribution   

Else establish error message for incorrect distribution 

end if _______^___________^_____^_^_____^_^__^_____ 

End pseudo code for Procedure STAT AV 

(c) PSEUDO CODE FOR THE BODY OF PROCEDURE 'STAT_AV 

FIGURE 77.  (CONTINUED) 
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4   CHAPTER SUMMARY 

SHARP establishes a set of pictorial abstracts that can be used to repre- 
sent an object-oriented design for an Ada computer program. With such a 
design, we can compose a large and complex computer program with manageable 
pieces. More importantly, we can localize design complexity, reducing 
interdependence relationships and thereby facilitating cost effective 
software development and maintenance. 

At the highest level of the design, SHARP abstracts represent Ada tasks 
declared in the main procedure to establish the program's concurrent 
processing threads (processes). At the next level, the abstracts represent 
Ada packages and tasks introduced to encapsulate objects that implement 
each thread's processing requirements. The interaction of the object 
implementations is represented by SHARP Invocation Diagrams. The complex 
bodies of program units responsible for communication between object 
implementations, visible within a package encapsulating an object, can be 
represented by SHARP Hierarchy and Invocation Diagrams. Abstracts envi- 
sioned as "blow ups" of entities identified in an invocation diagram can be 
used to represent details of task rendezvous, data flow between program 
units and data structures. The later diagram shows information hiding 
within data structures local to objects. At the lowest level of SHARP, 
annotated pseudo code is used to represent operations and logic within the 
bodies of individual program units. 

Reviewing the design of a large computer program (i.e., 200,000 lines or 
more) is a massive, time consuming and potentially error prone process. An 
Ada computer program of that magnitude represented exclusively by compre- 
hensive PDL would provide a very large document, perhaps "several feet 
thick," which would be very difficult to comprehend. SHARP provides 
abstracts that selectively present levels of design detail that would 
enable the development team of systems engineers and software engineers to 
communicate among themselves and with government reviewers, at different 
levels of abstraction. Abstraction is essential in the management of 
complexity. SHARP abstracts allow concise communication of relevant detail 
in the form of pictographs that capture the essential program structure. 
The annotated pseudo code option gives remaining detail to those personnel 
who need it. 
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CHAPTER V 

SHARP IN DoD SOFTWARE DESIGN DOCUMENTS 

This chapter describes the use of SHARP within software design documents to 
represent the structure of an Ada computer program to be implemented in an 
object-oriented manner. Specifically, graphics are described for a 
Software Top Level Design Document prepared in accordance with DI-MCCR- 
80012 and a Software Detailed Design Document prepared in accordance with 
DI-MCCR-80031. These documents are associated with the development of 
software per Department of Defense (DoD) requirements specified in 
DOD-STD-2167. 

DOD-STD-2167, entitled "Defense System Software Development," is the 
military standard fundamental to defense system software acquisition. It 
defines phases of a computer program's life cycle, reviews of computer 
program development held by the government during the life cycle, and 
products that must be delivered by a contractor to document the computer 
program and its development. 

Computer software developed in accordance with DOD-STD 2167 is assigned to 
one or more Computer Software Configuration Items (CSCIs) (formerly 
referred to as Computer Program Configuration Items or CPCIs). Each CSCI 
is developed over the six phases shown in Figure 78. 

As shown in Figure 79, in addition to source and object code, twenty-four 
principle products are developed to document software plans, requirements, 
design, test consideration and manuals. These products must adhere to 
requirements specified in the specific Data Item Descriptions (DIDs) 
indentified in the figure. The products provide documentation needed by 
the government (a) to verify that the software adheres to contractual 
requirements, and (b) to maintain the software after delivery by the 
contractor. 

1    INTRODUCTION 

1.1  BACKGROUND 

In 1977, the Joint Logistics Commanders formed the Computer Software 
Management Subgroup. In 1979, they decided at the Monterey 1 Software 
Workshop that tri-service software standards and data item descriptions 
(DIDs) were needed to standardize the DoD software development process 
among the three services. This objective was met on June 4, 1985 when the 
DoD released the following set of software development standards (SDS): 

• DOD-STD-2167, Defense System Software Development 

• MIL-STD-483A, Configuration Management Practices for 
Systems, Equipment, Munitions and Computer Programs 

• MIL-STD-490A, Specification Practices 
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• MIL-STD-1521B, Technical Reviews and Audits for Systems, 
Equipment and Computer Programs 

• An integrated set of related data item descriptions (DIDs) 

DoD had already decided by 1977 to fund the development of a new high-order 
language called Ada for the implementation of DoD mission-critical software. 
The develop of Ada had commenced in the middle 1970s.  It was completed in 
the early 1980s. 

In 1983, Ada was granted American National Standards Institute (ANSI) 
standardization and its definition was formally documented in 
ANSI/MIL-STD-1815A. 

Thus, the new software development standards and the Ada language were 
developed over the same time period. Unfortunately, these efforts primarily 
proceeded independently of one another. During SDS review cycles, Ada- 
related input was minimal. For example, the Council of Defense and Space 
Industry Association (CODSIA) reviews of SDS did not directly involve 
either the Association for Computing Machinery (ACM) or the Special Inter- 
est Group Ada (SIGAda). 

Nevertheless, DoD has mandated that all new embedded computer programs for 
mission critical systems must be written in Ada and is also mandating the 
use of DOD-STD-2167.  Other governmental agencies, such as NASA and the 
FAA, have accepted or are seriously considering the use of both Ada and 
DOD-STD-2167. 

Since the development of Ada and DOD-STD-2167 were essentially independent, 
explicit and implicit inconsistencies between them are likely. As might be 
expected, the graphics suggested in design-related DIDs of SDS do not 
effectively represent Ada-unique designs. 

To resolve this problem, the graphics of SHARP can be used to uniquely 
represent Ada computer programs in SDS design documentation. 

1.2  CHAPTER SCOPE 

This chapter discusses the use of SHARP in design documentation prepared in 
accordance with SDS. Section 2.1 addresses a Software Top-Level Design 
Document (DI-MCCR-80012) and Section 2.2 addresses a Software Detailed 
Design Document (DI-MCCR-80031) . Discussion applicable to the latter is 
presented in the context of both traditional and object-oriented designs. 

2.   APPLYING SHARP SOFTWARE DESIGN DOCUMENTS 

Block diagrams have been used to represent the architecture of computer 
programs designed in a conventional manner. For example, Figure 80 shows a 
CSCI architecture diagram provided in Figure 1 of DI-MCCR-80012, "Software 
Top Level Design Document." 
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We feel that such a conventional block diagram does not effectively repre- 
sent the structure of a computer program to be written in Ada. It does not 
specifically represent Ada subprograms, tasks and packages -- the basic 
architectural building blocks of an Ada computer program. Nor does it 
account for concurrent program unit execution using Ada tasks, or 
rendezvous between tasks. Also, it does not directly represent unique 
capabilities of Ada used to implement object-oriented designs, such as the 
encapsulation of program units in packages. The use of packages to hide 
information is fundamental to software implementation in Ada. 

2.1  APPLICATION OF SHARP IN SOFTWARE TOP-LEVEL DESIGN DOCUMENTS 

2.1.1  Sample CSCI Architecture Diagram 

DI-MCCR-80012 specifies requirements for a Software Top Level Design 
Document (STLDD) in which the structure of a Computer Software Configura- 
tion Item (CSCI) is documented. For Top Level Computer Software Components 
(TLCSCs) paragraph 10.2.5.1 of DI-MCCR-80012, in part, states: 

"The relationship among these TLCSCs and critical lower-level 
computer software components (LLCSCs) and units, if known, 
shall be described. The CSCI top-level architecture diagram 
(see Figure 1)." 

The figure referenced is provided in Figure 80.  We feel this representa- 
tion has several significant shortcomings.  Not only does it not account 
for Ada-unique program units,  it also does not represent the process 
abstraction aspects of a high level Ada design. 

As discussed in Chapter I, an Ada designer uses process abstraction to 
design a large and complex Ada computer program. In a computer system, 
resident software typically has to satisfy multiple demands. For example, 
user commands and communication interface requests may simultaneously 
compete for a computer's processing time. A computer program must respond 
in a timely manner to the commands and requests, even when they are 
received at about the same instant in time. 

With languages such as FORTRAN, the threads of nested program units are 
assigned to processes and execute concurrently under operating system 
control. An Ada designer implements each thread within the body of an Ada 
task, declared in the main program. 

Figure 81 provides an example of the SHARP tasks nested in the main program. 
It indicates the external entities serviced by the tasks including communi- 
cation links, multiple terminals, and work stations. 

The diagram also represents access to Ada packages through the Ada "with" 
clause. Specifically, the main program accesses package TEXT_I0_P1, to 
provide general purpose I/O capabilities. 

The diagram intentionally does not show the structure of each TLCSC Task. 
The structure may consist of program units interconnected in a traditional 
top-down manner, as discussed in Section 2.2.1. Alternatively, especially 
if large and complex, requirements to be implemented in a TLCSC task may be 
distributed among objects and implemented in an object-oriented manner, as 
discussed in Section 2.2.2. 
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2.1.2   Sample Diagram for Control and Data Flow Between TLCSCs 

Paragraph 10.2.5.4 of DII-MCCR-80012, in part, states: 

"A control flow diagram between TLCSCs may be used to illustrate 
top-level execution control. An example of a control flow 
diagram between top-level TLCSCs may be used to illustrate top- 
level data flow. An example of a data flow diagram is provided 
in Figure 3." 

The first figure referenced is provided in item a Figure 82. The second 
figure referenced is provided in item b. We feel these figures do not 
effectively represent the interaction of TLCSC tasks, which establish 
processes in the high levels of an Ada design. The interaction of tasks is 
accomplished via a task rendezvous. In a task rendezvous, a caller task 
initiates the rendezvous while the callee (or acceptor task) consummates 
the rendezvous. 

SHARP provides a specific graphical representation of Ada task rendezvous, 
as discussed in Section 2.4.3 of Chapter II. Figure 83 provides an example 
of the SHARP representation of TLCSC task rendezvous. 

2.2  APPLICATION OF SHARP IN SOFTWARE DETAILED DESIGN DOCUMENTS 

Paragraph 10.2.5.3 of DI-MCCR-80031, in part, states: 

"This  subparagraph  shall  describe  the  decomposition of  TLCSC 
W  into  LLCSCs  and  Units.   This  description  may  be provided 
by  a  TLCSC  decomposition  chart  (or  a  series  of charts). 
Figure 1 is an example of a TLCSC decomposition chart." 

The figure referenced is provided in Figure 84. We feel that this figure 
does not effectively represent the decomposition of a TLCSC, regardless of 
whether it is constructed using traditional techniques or object-oriented 
techniques. Not only does it not account for Ada subprograms, it does not 
represent information hiding in packages and tasks, which is basic to soft- 
ware implementation with Ada. 

2.2.1  Sample Diagram Applicable to Decomposition in a Traditional Manner 

When a TLCSC is decomposed using traditional techniques, a designer 
typically will abstract the implementation of applicable requirements in a 
top-down manner. For example, a relatively small and easily comprehended 
portion of the requirements can be implemented at one level, with the rest 
of the requirements implemented at other levels. 

Using this approach, the body of each TLCSC task, activated in procedure 
MAIN to account for a process, is abstracted by constraining the amount of 
detail, within it to an easily understood amount. Excluded detail can be 
passed to the bodies of called program units. The called program may be 
contained in an Ada package, which is made available though the use of the 
Ada "with" clause. 
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TLCSC31 

LLCSC310 LLCSC311 

LLCSC 
| 3100 

I MT 
31000 

IMT 
31001 

FIGURE 84.    CONVENTIONAL TLCSC DECOMPOSITION CHART 

This diagram is Figure 1 in DI-MCCR-80031 
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The deferred bodies of the called program units can be designed subject to 
the same constraints that applied in the design of the task's body. There- 
fore, these bodies are also constrained to an easily understood amount of 
detail, with lower detail moved again to called program units. 

A possible Ada-unique structure for the set of program units identified in 
Figure 84, is shown by the SHARP Hierarchy Diagram in Figure 85. A SHARP 
Hierarchy Diagram is described in detail in Section 2.3.1 of Chapter II. 

Figure 86 illustrates an associated SHARP Invocation Diagram, which is used 
to show the sequence of calls for the program unit identified in the 
hierarchy diagram, and program units visible in packages to be accessed 
using the Ada "with" clause. A SHARP Invocation Diagram is described in 
detail in Section 2.3.2 of Chapter II. 

2.2.2  Sample Diagram Applicable to Decomposition in an Object-Oriented 
Manner 

Requirements for a TLCSC task can be distributed among objects and imple- 
mented in an object-oriented manner. Each object has a set of operations 
unique to it and a local state defined in a data structure. The implemen- 
tation of the set of operations is not accessible by other objects. With 
Ada, each object can be implemented in Ada program units encapsulated in an 
Ada package. In consideration of terminology established in DI-MCCR-80031, 
these packages are designated as Top Level Computer Software Components 
(TLCSCs). Access to each object can only be made via calls to procedures 
in TLCSC packages. 

SHARP can be used to represent this object-oriented approach to the 
decomposition of a TLCSC task, as shown in Figure 87. In this figure, 
TLCSC packages encapsulating the implementation of object requirements are 
shown. In Figure 88, the internal structure of program units visible in 
the TLCSC packages are shown. The use of SHARP in this way to represent an 
object-oriented design is discussed in detail in Chapters II, III and IV. 

3.   CHAPTER SUMMARY 

SHARP abstracts can be effectively used in a Software Top Level Design 
Document (DI-MCCR-80012) and in a Software Detailed Design Document 
(DI-MCCR-80031) to graphically represent the design of an Ada computer 
program. In this manner, inconsistencies between the graphics appropriate 
for traditional designs and graphics appropriate for Ada-oriented designs 
are removed. In particular, the SHARP abstracts can be introduced into a 
Software Detailed Design Document to represent an object-oriented Ada 
design. This is especially significant since it is expected that object- 
oriented techniques will be widely used in conjunction with reusable 
software components, in the implementation of large and complex Ada com- 
puter programs, with significant software development cost savings pro- 
jected. 
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FIGURE 85.    SHARP REPRESENTATION FOR A TLCSC TASK 
HIERARCHY DIAGRAM 
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FIGURE 86.    SHARP REPRESENTATION FOR A TLCSC TASK 
INVOCATION DIAGRAM 
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(a)    LLCSC ADA PACKAGES USED TO IMPLEMENT OBJECTS 

TLCSC 310 
TLCSC 31 

• 
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(b)     INVOCATION OF LLCSC ADA PACKAGES 

FIGURE 87.    SHARP REPRESENTATION OF TLCSC ADA PACKAGES 
{OBJECT-ORIENTED DESIGN) 
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CHAPTER VI 

Testing Object-Oriented Ada Software 

This chapter describes a systematic approach to testing an Ada computer 
program that has been designed in an object-oriented manner. Object 
implementations can be tested by verifying that their responses to environ- 
mental stimuli are correct. To comprehensively test the implementations, 
the environmental stimuli should establish both nominal conditions and 
conditions that stress their interaction. 

In order to facilitate such testing, we describe basic Ada test packages 
that can be introduced to simulate environmental stimuli and to record 
parameters passed from one object to another. These test packages provide 
the framework for verification of object interaction at a high level, 
suitable for government formal test of Computer Software Configuration 
Items (CSCIs) established in accordance with DOD-STD-2167. 

This chapter also addresses lower level testing, which typically precedes 
the high level testing or is introduced to assess problems revealed by the 
high level testing. Lower level tests check the performance of the 
implementation of each object individually. 

For both the high level and lower level testing, we describe the use of 
SHARP abstracts to explicitly represent test software and its interaction 
with the operational software to be exercised. We illustrate that SHARP 
diagrams are effective, both to indicate high level tests of object inter- 
action and lower level tests of program units used to implement the complex 
requirements assigned to an object. 

This chapter demonstrates that the testing of software designed in an 
object-oriented manner can be explicitly represented using SHARP abstracts. 
Such a pictorial representation significantly helps us comprehend the scope 
of tests being undertaken. 

1.   INTRODUCTION 

1.1  BACKGROUND 

The localization of design complexity is the important feature of an object- 
oriented design that simplifies testing during software development and 
maintenance. With the localization of design complexities within object 
implementations, and the establishment of straightforward interfaces 
between the implementations, software testing becomes relatively straight- 
forward and easy to undertake in practice. This is because undesirable 
dependency relationships within a computer program have been constrained. 

In the past, global parameters and routines were shared among .many program 
units. If during testing any one of the global parameters or routines were 
modified to correct an error, the change could adversely affect several 
different parts of the computer program.  When one error was corrected by a 
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change, several others often were introduced. Seemingly innocent changes, 
at times, caused serious problems. However, by localizing design com- 
plexity with an object-oriented design, the effect of a change is trapped 
within the implementation of an object itself. 

In Ada, packages are important to the implementation of object-oriented 
designs and the testing of the implementations. Only program units 
declared in a package's specification can be directly accessed. Operations 
and data can be hidden within a package's body, where they cannot be 
directly accessed by program units in other packages. Thus, an Ada package 
is an ideal program unit for encapsulating special test software and an 
object implementaion. 

1.2   CHAPTER SCOPE 

In this chapter, a systematic approach to testing object-oriented Ada 
software using special test software is described. High level and lower 
level tests are identified. Special test software is identified and 
described. The representation of the special test software and its 
interaction with object implementations is graphically represented using 
SHARP abstracts. 

2.   TESTING A COMPUTER PROGRAM IMPLEMENTED IN AN OBJECT-ORIENTED MANNER 

In the development of object-oriented software, a team of programmers will 
develop software needed to implement requirements assigned to individual 
objects. This team must extensively test the implementation of an 
individual object and verify that integrated object implementations perform 
correctly. Then, the programming team typically will turn over the soft- 
ware to a test team. 

The test team will execute the software in conjunction with system 
hardware. It will run tests designed to verify that the integrated object 
implementations satisfy predefined requirements. If incorrect performance 
is detected, the software must be returned to the programming development 
team. 

The programming development team must run new tests on the individual 
object implementations (e.g., enhancements of their previous tests) to 
determine the implementations not performing correctly. Once a faulty 
object implementation has been detected, its internal structure must be 
tested to isolate faulty program units within it and the incorrect code 
within the faulty program units. 

This section discusses the ramifications of such testing of object-oriented 
software. Specifically, paragraphs in Section 2.1 consider high level 
tests of object interaction and paragraphs in Section 2.2 address low level 
tests of the implementation of a single object and its internal structure. 
In both cases, SHARP abstracts are used to represent special test software 
and its interaction with Ada application software. 
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2.1  HIGH LEVEL TESTS OF THE INTERACTION OF OBJECT IMPLEMENTATIONS 

For a large and complex Computer Software Configuration Item (CSCI) to be 
implemented in Ada, an object-oriented approach to design is expected to be 
widely applied. DOD-STD-2167 and its companion test unique data item 
descriptions (DIDs), describe government requirements for testing the CSCIs 
and test documentation that must be prepared. Specifically, the following 
documents must be prepared as part of the formal test of a CSCI: 

• Software Test Plan (to define the scope of testing per 
DI-MCCR-80014) 

• Software Test Description (to identify input data, expected 
output data and evaluation criteria per DI-MCCR-80015) 

• Software Test Procedure (to describe test steps, expected 
results for each step and test data sheets per DI-MCCR-80016) 

• Software Test Report (to document test results and provide 
an analysis of CSCI performance, including any detected 
deficiencies, limitations or constraints, all per DI-MCCR- 
80017) 

Testing of a CSCI an be envisioned as a mapping of software requirements 
specified in a Software Requirements Specification (DI-MCCR-80025) into 
test stimuli for a set of test cases. When a large and complex CSCI 
consists of several interacting object implementations, the test stimuli 
are used to exercise the set of implementations under both nominal and 
stress conditions. In addition, spectrum of tests can be performed on 
critical implementations, to the extent time and money permit. The 
performance of the object implementations is measured by recording 
parameters passed between the implementations and the process tasks 
declared in the main program. The recorded data is compared to expected 
values, either directly or after data reduction. 

This section discusses such testing of object implementations in Paragraph 
2.1.3. As a prerequisite to this discussion, it describes in Paragraph 
2.1.1 basic concepts for object implementation in Ada; and describes in in 
Paragraph 2.1.2 special Ada-unique test packages introduced to generate 
test stimuli and record information being passed between object packages. 

2.1.1  Layers of Object Packages 

Grady Booch suggests that a large software system should be built with 
layers of abstraction. 6 He feels that each layer should account for one or 
more objects. 

With SHARP, abstracts can be used to represent the layers of packages and 
tasks typically used to implement objects. For objects implemented using 
packages, the SHARP Ada Package Content Diagram (Option B in Chapter II) 
can be used to represent the package layers, as illustrated in Figure 89. 
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Program units declared in the specifications of packages facilitate inter- 
faces between the packages. The information transfer between these program 
units establishes object interaction. This interaction can be represented 
in a SHARP Invocation Diagram. As shown in Figure 90, a designer will 
typically require the highest level object implementation, of a set of 
layered implementations, to interact with a task declared in the main 
program. This task acts as a substitute for a process directly controlled 
by an operating system, which is the technique used to facilitate for 
real-time control with a language like FORTRAN. The task provides a 
dynamic interface with environmental entities external to a computer (e.g., 
an interface with a work station, terminal or communication link), as 
discussed in Section 3.1 of Chapter I. 

2.1.2  Special Test Software 

Special test software can be introduced to verify the correct performance 
of object-oriented Ada software. With SHARP, the special test software can 
be shaded to distinguish it from applications software, as illustrated by 
the SHARP diagrams provided in this section. 

2.1.2(a)  Test Driver Package 

As part of the framework for the testing of object interaction, an Ada 
package can be introduced to generate test case stimuli. Using this 
package, various test cases can be initiated under operator control. A 
task declared in the specification of this package can stimulate 
environmental stimuli. Utilizing task rendezvous, it can pass this 
stimulate to the environmental interface task, as illustrated in Figure 91. 

Since the interaction of object implementations may be conditional, only a 
subset of the implementations may respond to stimuli produced for a parti- 
cular test case. The subset of objects exercised during a particular test 
case can be shown in bold face, as illustrated in Figure 92. 

2.1.2(b)  Environmental Simulator Package 

To test object interaction in a more realistic and dynamic manner, an Ada 
package can be used to encapsulate Ada program units that generate a 
sequence of stimuli over time. An Ada task declared in the specification 
of this package can interface with visible program units in object 
implementation packages, and can respond to feedback received from the 
object implementations under test, as shown in Figure 93. 

The environmental simulator package is initialized by a tester to establish 
the sequence of stimuli to be generated. During test execution, it typi- 
cally performs independent of the tester. 

2.1.2(c)  Data Recording Package 

In conjunction with a test driver or environmental simulator package, a 
data recording package can be introduced to record parameters passed 
between object implementations. This can be accomplished with a set of 
program units that are called just prior to the passing of data.  The 
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specification of these program units must be identical to the interfacing 
program units that facilitate data passage. The bodies of these program 
units establish a record of data being passed and the time of the passage. 

The introduction of such recording program units is illustrated by the 
SHARP pictographs in Figure 94. As shown, the call to a recording program 
unit may be made conditional. In this way, appropriate conditions can be 
established prior to test execution, defining what data passage is to be 
recorded and what data passage is not to be recorded. 

2.1.3 Testing Object-Oriented Software 

To test a set of objects, stimuli are introduced by the test driver package 
(essentially for one test case at a time) or by the environmental simulator 
package (for more complex dynamic interaction between the object 
implementations and the environment external to them). 

The stimuli introduced should relate to a complete set of nominal software 
requirements. Nominal testing introduces stimuli and operating conditions 
typical of those to be experienced by the software in an operational "real 
world" environment. This testing is designed to exercise the software 
under expected conditions, to ensure that all object implementations are 
performing as required under such conditions. 

Also, extreme values of the stimuli (e.g., sets of boundary conditions) 
should be generated to stress the layered object implementations. Stress 
testing introduces stimuli and operating conditions that will subject the 
software to possible extreme conditions. This testing makes maximum, 
overload or even erroneous demands on object implementations. It can 
include simulated breakdown of interfacing hardware and other unexpected 
conditions that could occur in the operational environment. Attention is 
often given to unusual combinations of events that should have been antici- 
pated in the object-oriented design. These extreme values of stimuli can be 
generated by either the test driver package or the environmental simulator 
package. Furthermore, the environmental simulator package can also stress 
the layered object implementations with respect to the frequency at which 
stimuli are presented to them. 

In addition, if time and money are available, the set of object implementa- 
tions can be further assessed by monitoring their performance over a 
spectrum of tests. Such testing is especially applicable to critical 
interaction of object implementations (e.g., objects associated with life 
dependent events). Performance spectrum testing uses a large number of 
test cases designed to exercise software over its full range of input 
values. Analysis can be performed on the results to evaluate overall 
behavior of integrated object implementations. Test cases are carefully 
selected to incorporate both nominal and extreme conditions, and to include 
as many combinations of representative input values as possible. Tests 
results are analyzed, either manually or with the aid of statistical 
analysis tools, to identify patterns, detect anomalies and biases in 
overall results, and draw conclusions about program performance. Graphs 
and tables of results typically are prepared to aid in the analysis. 
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Results may be used to identify special cases requiring additional testing, 
to define the range of missions that can be successfully accomplished by 
the object-oriented software, and to compare the performance of different 
software versions. 

2.2  LOWER LEVEL TESTS OF A SINGLE OBJECT IMPLEMENTATION 

In the development of object-oriented software, object implementations are 
tested individually and then integrated prior to formal testing. If during 
trial runs of formal tests, incorrect performance is detected, lower level 
tests of individual object implementations must be enhanced and repeated to 
determine the reason for the incorrect performance. 

Each object implementation can be individually tested to determine if it is 
causing the poor performance. When a faulty object implementation is 
detected, its internal structure can be tested to isolate faulty program 
units within it. The faulty program units can, in turn, be tested to 
finally isolate incorrect code. In this manner, problems can be systemati- 
cally assessed and isolated. 

2.2.1 Testing a Single Object Implementation as a Whole 

To identify a faulty object implementation, each of a set of implementa- 
tions must be individually tested. To test a single implementation, a 
tester needs a test driver package and a recorder package. The complex 
hidden structure of the object implementation along with the test driver 
and recorder packages can be graphically represented in a SHARP Invocation 
Diagram, such as in the manner shown in Figure 95. 

Extreme values of stimuli can be generated to stress the object implemen- 
tation. These stimuli can be introduced either statically or at high 
frequency rates. Pictographs for the set of program units exercised in a 
particular test case can be shown in bold face within the SHARP representa- 
tion of the test case. As illustrated in Figure 96 for two of a set of 
multiple test cases, a set of test cases is needed to exercise various 
paths through the hierarchy of program units used to implement the internal 
structure of a complex object. Within a SHARP Invocation Diagram, bold 
face can be used to indicate program units exercised in a particular test 
case. 

2.2.2 Testing the Internal Structure of an Object Implementation 

Once a faulty object implementation has been detected, its internal 
structure must be exercised to isolate the problem. When an object itself 
consist of a set of objects, the interaction of the internal implementation 
of objects can be tested in the manner discussed in Subsection 2.1. 

In practice, an object typically is implemented using several levels of 
abstracted subprograms encapsulated in an Ada package (or task). Detail 
contained within each subprogram's body is constrained to an easily 
understood amount. Excluded detail is passed to the bodies of lower level 
subprograms. These bodies are also constrained to an easily understood 
amount of detail, with lower detail moved again to yet lower level 
subprograms. 
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Classical computer programmer testing can be used to test such sequential 
subprogram interaction. Such testing can be accomplished using a debugger 
and other test tools provided in an Ada Programming Support Environment 
(APSE). For example, parameters passed between subprograms can be checked, 
internal branching within each subprogram can be verified, and data gen- 
erated in arrays or records can be checked. 

The object may also be implemented using multiple tasks in addition to 
several subprograms. The testing of task performance is not as 
straightforward as the testing of subprogram performance, due to concur- 
rency associated with task execution. Although classical techniques using 
an APSE debugger can be applied to assess task performance to a certain 
extent, other time dependent tests typically will have to be conducted to 
check the temporal aspects of task execution. 

To establish time dependent tests, the environmental simulator package can 
be used to generate a sequence of stimuli in a predetermined manner and 
over a specific time period. The faulty object implementation can be 
tested in conjunction with other implementations and the performance of 
tasks within the faulty implementation can be monitored. 

Such monitoring can be accomplished using a test recording package to 
record the values of parameters received by task entry points during 
rendezvous. As shown in Figure 97, the recording package can contain a set 
of subprograms. Calls can be made to the subprograms from the receiving 
task, as part of the rendezvous accept statement. This is illustrated by 
the following Ada code for the task rendezvous example shown in Figure 97. 

task TASK_D; 
entry ENTRY1: (PAR1 

PAR2 
entry ENTRY2: (PAR3 
entry ENTRY3: (PAR4 

PAR5 
PAR6 

in INTEGER; 
in INTEGER) 
in INTEGER) 
in INTEGER; 
in INTEGER; 
in INTEGER) 

end TASK D; 

task body TASKD is 

accept ENTRY1 (PAR1: in INTEGER; 
PAR2: in INTEGER) do 

REC0RD_ENTRY1 (PAR1, PAR2); -- Call subprogram to record 
-- values of the parameters received by entry point ENTRY1 
-- and the time they were received 

end ENTRY1; 
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accept  ENTRY2 (PAR3: in out INTEGER) do 

REC0RD_ENTRY2 (PAR3); -- Call subprogram to record 
-- values of the parameters received by entry point ENTRY2 
-- and the time they were received 

end ENTRY2; 

accept ENTRY3 (PAR4 
PAR5 
PAR6 

in INTEGER; 
in INTEGER; 
in INTEGER) do 

REC0RD_ENTRY3 (PAR4, PAR5, PAR6); -- Call subprogram to record 
-- values of the parameters received by entry point ENTRY2 
-- and the time they were received 

end ENTRY3; 
o 
o 
o 

end TASK D; 

Using this recording capability, a record of parameter values passed during 
task rendezvous and the time of task rendezvous can be established. The 
record can then be assessed to check the validity of parameter values 
passed between tasks, and if they are passed in a timely manner, in compli- 
ance with mission requirements. 

As with other test data recording, the calls to recording subprograms can 
be made conditional. In this way, the tester can establish the conditions 
needed to provide test recording needed for the particular test case being 
run. 

3.   CHAPTER SUMMARY 

Ada computer programs that have been designed in an object-oriented manner 
can be systematically tested. Tests can be conducted at a high level to 
exercise interacting object implementations used to construct the computer 
program. 

If high level tests reveal poor performance, lower level tests can be 
conducted on individual object implementations to identify faulty 
implementations, and yet lower level tests can be conducted to isolate the 
problem in the internal working of a faulty implementation. Changes 
introduced to correct the faulty implementation will not affect other 
object implementations that have been performing correctly, because of the 
localized nature of operations and data bases unique to each object. 
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To provide a framework for such tests, special purpose Ada test packages 
must be introduced to generate environmental stimuli and record parameters 
passed between program units. For a particular test case, the specific 
program units exercised, as well as the special test packages introduced, 
can be clearly indicated using SHARP abstracts. These explicit pictorial 
representations of testing significantly help in comprehending the scope of 
the tests being undertaken. As such, they will be very helpful to 
government reviewers of contractor testing activities. 
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CHAPTER VII 

Estimating the Cost of Object-Oriented Ada Software 

Existing cost models have been formulated for software designed in a 
traditional manner, and therefore cannot be directly used to estimate the 
cost of Ada software developed in an object-oriented manner. In this 
chapter, an algorithm is established to directly project the cost of 
object-oriented Ada-unique software. Cost factors within the algorithm are 
projected using the Constructive Cost Model (COCOMO) but in a special 
manner. 

In addition, algorithms are established to project the size of the 
implementation of an object-oriented Ada design. Factors in the size pro- 
jection algorithm can be established by inspection of an object-oriented 
Ada-unique design represented by SHARP abstracts. This is important since 
the size of a program is a key input to cost/schedule estimation models. 
The models can provide meaningful results only if the size metric is 
accurately estimated. 

The algorithms are applied to project the costs to implement a hypothetical 
embedded computer program using Ada in an object-oriented manner. The cost 
to implement the same computer program using FORTRAN and assembly language 
is projected using COCOMO directly. The results indicate that when a large 
and complex computer program is developed in an object-oriented manner 
using Ada, significant cost savings can be expected relative to traditional 
development approaches. 

1.   INTRODUCTION 

1.1  BACKGROUND 

1.1.1  Cost Savings Expected Due To Ada Standardization 

In order to promote standardization, DoD has mandated the use of Ada in the 
implementation of mission-critical software. Standardizing to a single 
high-order language will contribute to lower software life-cycle costs. 
For example, the use of many different languages necessitates the develop- 
ment and maintenance of several different compilers and programming support 
tools. With Ada as the standard computer programming language for DoD 
mission critical systems, fewer compilers will have to be developed. 

DoD has initiated an Ada compiler validation program to help ensure that 
all features of the standard language are being correctly implemented by 
various compilers. In time, proponents of Ada expect that a variety of Ada 
programming support tools (e.g., editors and debuggers) will also become 
available. DoD has taken steps to help ensure that tools that are not 
architecture dependent will have general applicability to different 
computing configurations. 
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In the long run, it is expected that Ada standardization will lead to labor 
force savings since a large number of personnel will have on-the-job 
experience using the Ada language and associated programming support tools. 
These capabilities are expected to be essentially portable from one project 
to the next, significantly reducing programmer training costs. The exper- 
ience base of the DoD programming community will not be subdivided among 
several languages. 

1.1.2 Cost Savings Expected Due to Ada Technical Features 

In addition to savings associated with standardization, proponents of Ada 
expect that its technical features will also help reduce software 
development costs. Several of these technical features, and their 
graphical representation with SHARP, are described in Chapter II. For 
example, in Section 2.2.1 of Chapter II, the use of Ada packages to 
encapsulate reusable software (and represent them in an Ada Package Catalog 
Diagram) is described. It is envisioned that software contractors will 
construct and apply in practice a library of Ada packages for such things 
as hardware drivers, communication protocols, high and low level I/O, math 
functions and special purpose algorithms. 

As another example, in Section 2.4.2 of Chapter II, the SHARP representa- 
tion of Ada generics is described. With Ada generics, an existing Ada 
package and its contents become more general purpose. For example, the 
name of a generic subprogram, and typically the definition of its types and 
the range of permissible values for passed parameters, are created during 
compilation. (The process of creating a particular instance of the generic 
program unit is referred to as generic instantiation.) 

1.1.3 Cost Savings Expected Due to Object-Oriented Software Development 

Possibly the most important technical features of Ada are its ability to 
facilitate data abstraction and information hiding. These factors can be 
used in the implementation of object-oriented designs, which provide a 
means for controlling dependency relationships between variables, types and 
program units. 

The control of complex dependency relationships between variables, types 
and program units with an object-oriented design is discussed in Section 
2.1 of Chapter III in the context of software maintainability and in 
Section 1.2 of Chapter V in the context of software testing. 

The object-oriented approach is also critical to the development of Ada 
software because of the complexities of Ada compilers, which make extensive 
checks of the dependency relationships. Ada compilers are slow relative to 
compilers for older languages (e.g., FORTRAN). With Ada, implementation of 
objects are encapsulated in loosely coupled Ada packages and tasks, which 
the development team can code and test independently. By constraining the 
size of these object program units and stubbing program units interacting 
with them, the Ada packages and tasks can be separately compiled and 
recompiled in a timely manner during their development. 
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1.1.4 Accounting for Ada Savings in Cost/Schedule Estimation Models 

In order to estimate the cost of Ada software developed using traditional 
design approaches, an analyst can make use of existing models. They have 
been calibrated for software implementations using the traditional 
approaches, and account for the high costs incurred in part because of the 
complex dependency relationships inherent in the traditional approach to 
designing and implementing software. 

However, the existing models cannot be directly used in the estimation of 
software to be designed and implemented in an object-oriented Ada-unique 
manner. Rather, a new model is needed that will take into account the cost 
savings introduced due to control of the complex dependency relationships. 

In addition, regardless of which model is used, the size of the program must 
be accurately established, whether measured in terms of the number of source 
statements to be delivered or in some other way (e.g., the number of 
function points).  Most models do not provide a mechanism for accurately 
projecting the size of a computer program.  However, by using SHARP 
abstracts, such projections can be rapidly and accurately made. 

1.2  CHAPTER SCOPE 

In this chapter, we present a new model for projecting the cost to develop 
object-oriented Ada software. In conjunction with this model, the 
estimation algorithms of COCOMO are used in special ways to estimate cost 
factors in the model. Section 2 describes algorithms associated with 
Basic, Intermediate and Detailed COCOMO. Section 3 provides an algorithm 
that projects the cost of object-oriented Ada software directly accounting 
for the inherent cost advantages associated with this software. It 
provides algorithms that can be used to project the size of the software 
and discusses establishing other model inputs in a manner unique to Ada. 
Section 4 provides an example of applying these the algorithms in practice. 

2.   OVERVIEW OF THE CONSTRUCTIVE COST MODEL (COCOMO) 

2.1  INTRODUCTION 

The Constructive Cost Model (COCOMO) is an empirical model used to predict 
the cost of software development efforts. Data collected from sixty-three 
projects at TRW, Inc. was used to formulate and calibrate COCOMO. This 
section provides an overview of COCOMO. For a detailed description of the 
model and its derivation, see Barry Boehm's book, Software Engineering 
Economics. 

2.1.1 Versions of COCOMO 

Three different versions of the COCOMO model have been formulated. They 
are referred to as Basic, Intermediate and Detailed COCOMO. Each version 
predicts the cost of the software effort in units of manmonths, but with 
different degrees of accuracy. Basic COCOMO predicts software development 
cost as a function of the expected size of the software product measured in 
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source instructions. It is meant to provide a rough order of magnitude 
estimates. When applied to the TRW, Inc. data base, it estimates software 
development effort within a factor of 1.3, 29% of the time; and within a 
factor of 2, 60% of the time. 

Intermediate COCOMO predicts software cost as a function of attributes of 
the product, computer, personnel and project, as well as the number of 
source instructions to be developed. It can be used to estimate the 
cost of the total software package or components of the total software 
package. When estimating on a component by component basis, attributes 
selected can vary from one component to another as appropriate. With 
respect to the TRW data base, Intermediate COCOMO estimates are within 20% 
of actual project costs 68% of the time. 

Detailed COCOMO extends the Intermediate model by taking, into account 
life-cycle phase dependencies of cost drivers. 

2.1.2 Modes of Software Development 

All three versions of COCOMO distinguish between three modes of software 
development, differing in scope and intrinsic difficulty. The modes are as 
follows: 

• Organic mode (small to medium size in-house projects under- 
taken by persons familiar with the application and experi- 
enced in developing software for related applications) 

• Embedded mode (projects developing a strongly coupled 
complex of hardware and software that is difficult to change 
or fix, consists of new architecture, and is tightly con- 
strained by reliability, memory and speed of execution) 

• Semi-detached mode (projects halfway between a familiar, 
in-house organic project and an unfamiliar, innovative 
embedded project). 

2.1.3 Phases of Software Development 

The phases of software development covered by each version of COCOMO 
encompass: 

• Product design specification 

• Detailed design specification 

• Code and unit test 

• Integration and test 

A separate formulation is provided to estimate the costs of maintenance 
work. The specific activities accounted for in the model are shown in the 
work breakdown structure shown in Figure 98. 
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2.1.4 Definitions and Assumptions of COCOMO 

COCOMO defines delivered source instructions to include all source instruc- 
tions translated by a compiler into machine code, excluding comment liner; 
and lines of unmodified library software. Job control language, format 
statements and data declarations are included in the instruction count. 
Support software (e.g., test drivers) is excluded, unless it is to be 
developed with the same care and documentation as the deliverable product. 

Basic assumptions made by COCOMO include the following: 

1) A manmonth consists of 152 hours of working time. 

2) Project management undertaken by both developer and 
customer is good. 

3) The requirements specification is not substantially 
changed after the plans and requirements life-cycle 
phases. 

2.2 BASIC COCOMO 

2.2.1 Projecting Development Costs with Basic COCOMO 

Basic COCOMO uses the following algorithm to estimate the effort to develop 
software in units of man-months: 

MM - K(DSI/1000)**E (2-1) 

where values of the coefficient K and the exponent E are given in Table 2. 
As indicated in this table, a unique value for K and E are selected as a 
function of the software development mode (i.e., organic, semi-detached or 
embedded). 

TABLE 2   COEFFICIENTS AND EXPONENTS OF THE 
BASIC COCOMO ESTIMATION ALGORITHM 

DEVELOPMENT ESTIMATING 
MODE DEVELOPMENT COST 
 K E  

Organic 2.4 1.05 
Semi-Detached 3.0 1.12 
Embedded 3.6 1.20 

2.2.2  Projecting Software Maintenance Costs with Basic COCOMO 

COCOMO assumes that the developed software product has been tested to the 
point where only residual software bugs remain, bugs that were not revealed 
by software testing undertaken during development. Once this software is 
delivered to a user for site operation, maintenance of it is necessary. By 
maintenance, COCOMO means the process of removing residual bugs while 
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leaving the primary aspects of the software intact. Therefore, maintenance 
encompasses needed modification of the software product's code, documenta- 
tion and data base structure associated with the software "repair." COCOMO 
also includes in maintenance the update and redesign of small portions of 
the software product. 

The cost to perform this maintenance is estimated as a function of the 
development estimate; and expected additions and projected modifications, 
which are referred to as the Annual Change Traffic. The Annual Change 
Traffic (ACT) is the percentage of the software product's source instruc- 
tions that are projected to undergo change during a (typical) year. Basic 
COCOMO estimates annual maintenance effort using the following equation: 

MM(MAINT) - MM(DEV)*ACT (2-2) 

where MM(DEV) is the development effort estimate in manmonths, established 
using Equation 2-1. 

2.3  INTERMEDIATE COCOMO 

Intermediate COCOMO estimates software development cost as a function of 
the size of the product and tha development mode, as does the basic model. 
However, the Intermediate COCOMO estimate also accounts for attributes 
characterizing the development effort. 

2.3.1  Projecting Development Costs with Intermediate COCOMO 

The estimation algorithm of intermediate COCOMO is as follows: 

MM - (C  * C * ... C15)K(DSI/1000)**E (2-3) 

where the coefficient K and the exponent E vary as a function of the 
development mode, as shown in Table 3. The coefficients C are functions 
of attributes of the development effort: 

C - f(A ) (2-4) 
n     n 

The first three attributes account for characteristics of the software 
product.  They are: 

L. - required software reliability 

A_ — data base size 

A- - product complexity 

The next four attributes account for the computer used.  They are: 

A. - execution time constraint 
4 

A,. - main storage constraint 

A, - virtual machine volatility 

A., - computer turnaround time 
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The next five attributes account for the development personnel.  They are: 

Afl - analyst capability 

A_ - applications experience 

A1_- programmer capability 

A....- virtual machine experience 

A1 „- programming language experience 

The final three attributes are as follows: 

A1 _- use of modern programming practices 

A.,- level of tool support 

A1,.- schedule constraint 

TABLE 3  COEFFICIENTS AND EXPONENTS OF THE 
INTERMEDIATE COCOMO ESTIMATION ALGORITHM 

ESTIMATING 
DEVELOPMENT DEVELOPMENT EFFORT 

MODE K E 

Organic 3.2 1.05 
Semi-detached 3.0 1.12 
Embedded 2.8 1.20 

COCOMO requires the estimator to rate each attribute (e.g., very high, 
high, nominal, low or very low) and provides a value f(A ) as a function of 
the rating.  The meaning of each attribute rating and the associated values 
for f(A ) are provided in Appendix D. 

2.3.2 Projecting Software Maintenance Costs with Intermediate COCOMO 

Intermediate COCOMO derives software maintenance costs from software 
development costs using Equation (2-2), in the same manner as Basic COCOMO. 
However, the coefficient C. s is set to unity since it accounts for develop- 
ment schedule constraints, which are not applicable.  Also, C , which ac- 
counts for software reliability and C._, which accounts for the use of 
modern software practices, are given different values than those applicable 
to development.  These differences are explained in Appendix D. 
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2.3.3  Intermediate COCOMO and Component Estimation 

Intermediate COCOMO can be applied to modules of a software package as well 
as the entire package itself.  Equation (2-3) applies to modules equal to 
or greater than 2000 source statements. 

For smaller modules, the following steps must be taken to estimate their 
costs: 

a. Calculate nominal effort for the whole product using the 
following algorithm: 

MM^ - K(DSI/1000)**E (2-5) 

b. Calculate nominal productivity as follows: 

NOM PROD - DSI/M^ (2-6) 

c. Divide the nth module's size by nominal productivity 
yielding the nominal component effort estimate. 

MM^(n) - DSI(n)/N0M PROD (2-7) 

d. For each module, establish ratings for each of the 15 development 
attributes; then establish 15 coefficients unique to each component 
using Equation 2-4 and Appendix D. 

e. For the nth module, refine its nominal estimate by applying 
the appropriate cost driver factors as follows: 

MM(n) - C1(n)*C2(n)*...C15(n)*MMN(n)     (2-8) 

2.4  DETAILED COCOMO 

In practice, software development factors (e.g., required reliability, 
applications experience and interactive software development) affect some 
phases more than others. Detailed COCOMO provides a mechanism for taking 
into account these phenomena. 

For a computer program that has been partitioned into n modules, the 
development cost for the nth module is calculated using the following 
relationship: 

P 
MM(n) -  S C1(n,p)*C2(n,p)*... * C15(n,p) * MM^n.p)    (2-9) 

p-1 
where 

MMN(n,p) - MMN(n) * P(p)/100 (2-10) 

MMM(n) is the nominal development cost of the nth module, calculated using 
Equation 2-7 with DSI(n) set to the. number of delivered source instructions 
projected for the nth module. P(p) is the percentage of the development 
effort associated with the product design phase (i.e., p-1), the detailed 
design phase (i.e., p-2), the code and unit test phase (i.e., p-3) or the 
integration and test phase (i.e., p-4) . The values of P(p) are given in 
Table 4. 
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The coefficients C.(n,p) (1-1,2,. 
module and the pth phase. 

15) are selected to be unique to the nth 

TABLE 4 VALUES OF P(p) AS A PERCENTAGE 

VALUES OF P(p 
MODE EFFORT 2 KDSI  8 KDSI 32 KDSI 128 KDSI 

Organic 

Semidetached 

Embedded 

1 Product design 16 
2 Detailed design 26 
3 Code and unit test 42 
4 Integration and test 16 

1 Product design 17 
2 Detailed design 27 
3 Code and unit test 37 
4 Integration and test 19 

1 Product design 18 
2 Detailed design 28 
3 Code and unit test 32 
4 Integration and test 22 

16 16 16 
25 24 23 
40 38 36 
19 22 25 

17 17 17 
26 26 24 
35 33 31 
22 25 28 

18 18 18 
27 26 25 
30 28 26 
25 28 31 

3. COCOMO AND THE COST/SCHEDULE ESTIMATION OF OBJECT-ORIENTED ADA SOFTWARE 

3.1 INTRODUCTION 

This section describes the application of COCOMO in the estimation of the 
cost of object-oriented Ada software. Section 3.2 introduces a special 
technique for estimating the cost of object-oriented Ada software. This 
technique establishes an estimation algorithm unique to object-oriented Ada 
computer programs. 

As do other software estimation models, the algorithm unique to object- 
oriented software operates on a size metric and attributes of the Ada-unique 
implementation of the design. Typically, software cost estimation models 
describe how to establish implementation attributes but do not address the 
more difficult issue of how to project the number of source statements. 
Our discussion covers both topics. Specifically, the algorithms for 
projecting the number of source statements needed to implement an object- 
oriented design are introduced in Section 3.2.2, and a discussion of 
attribute selection is provided in Section 3.2.3. 

3.2 ESTIMATING THE COST OF OBJECT-ORIENTED ADA SOFTWARE 

COCOMO has been formulated and calibrated using data measuring the develop- 
ment of computer programs that have not been designed in an object-oriented 
manner. For such software, complex dependency relationships typically 
exist between types, variables, and program units. Accordingly, develop- 
ment costs for such software has increased exponentially with computer 
program size. 
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As described in earlier chapters, an object-oriented design is introduced 
to minimize complex dependency relationships. Therefore, COCOMO and other 
existing software cost/schedule estimation models cannot be directly 
applied to the estimation of software to be developed in an object-oriented 
manner. However, it is still possible to estimate the costs of object- 
oriented Ada software using algorithms that take advantage of COCOMO in the 
manner outlined in this section. 

To establish these estimates, an estimation algorithm unique to software 
implemented in an object-oriented manner is formulated in Section 3.2.1. 
The algorithm operates on the number of source instructions required to 
implement objects, which can be estimated using the techniques presented in 
Section 3.2.2. The algorithm also requires the selection of COCOMO 
development attributes, which is discussed in Section 3.2.3. 

3.2.1 Algorithm Unique to Estimating Object-Oriented Ada Software 
Development Costs 

We can state that the cost to develop object-oriented Ada software is given 
by the following relationship: 

(COST) - (DESIGN COST) + (OBJECT IMPLEMENTATION COST) 
+ (OBJECT IMPLEMENTATION INTEGRATION COST)     (3-1) 

Assuming that the cost of a traditional design is essentially equivalent to 
that of an object-oriented design, design costs can be estimated using 
COCOMO as discussed in Paragraph 3.2.1a. In practice, it should not be 
either significantly harder or easier to design object-oriented software 
than software designed using other approaches (e.g., structured top-down). 

Since objects are essentially independent computer programs that are 
loosely coupled, the implementation of each object can be assumed to be an 
independent effort. These implementation costs can be estimated using 
COCOMO, as discussed in Paragraph 3.2.1b. 

The integration of these objects is not directly accounted for by COCOMO. 
However, as a lower limit, this effort can be assumed to be essentially 
equivalent to that of integrating program units, since loosely coupled 
object interfaces ideally should not be more complicated than typical 
program unit interfaces. Making this assumption, a lower limit on the cost 
of object integration can be estimated, as discussed in Paragraph 3.2.1c. 

3.2.1a  Establishing Design Cost of Object-Oriented Ada Software 

The design costs for object-oriented Ada software can be assumed equivalent 
to the costs incurred with other design methodologies. In practice, there 
is nothing significantly more or less difficult about mapping software 
requirements into loosely coupled objects or high coupled modules (e.g., 
modules associated with a top-down design). 

Accordingly, COCOMO can be applied to establish object-oriented design 
costs using the following relationship: 
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(DESIGN COST} - (% DESIGN/100)*MM(TOTAL) (3-2) 

where MM(TOTAL) is the COCOMO software development estimate established 
using Equation 2-3 (for Intermediate COCOMO) or Equation 2-9 (for Detailed 
COCOMO) applied to the total number of source statements to be developed 
for all objects; and % DESIGN is given by the following: 

(% DESIGN) - P(l) + P(2) (3-3) 

where P(l) is the percentage of the software development cost associated 
with product design and P(2) is the percentage associated with detailed 
design, as given in Table 4. However, it is anticipated that computer 
aided design (CAD) systems will lower design costs, whether traditional or 
object-oriented. Since, as COCOMO predicts, design costs account for more 
than 40% of software development costs, these savings will be significant. 
We discuss CAD and its ramifications with SHARP in Chapter IX. 

3.2.lb Establishing Object Implementation Costs 

Each object can be assumed to be developed essentially as an independent 
computer program. With this assumption, COCOMO can be applied to establish 
implementation costs using the following relationship: 

P 0(p) 
(OBJECT IMPLEMENTATION COST) - P(3)* S  2 MM(p.o)      (3-4) 

p-1 o-l 

where P(3) is the percentage of the software development cost associated 
with program unit code and test; and MM(p,o) is the development cost for 
the oth object of the pth process. The factor P(3) is obtained using Table 
4. The factors MM(p,o) are calculated using Intermediate COCOMO applied to 
each object, as described in Section 2.3, or using Advanced COCOMO applied 
to each object, as described in Section 2.4. 

3.2.1c  Establishing Object Implementation Integration Costs 

As already stated, COCOMO does not predict object implementation integra- 
tion costs. In practice, these costs will be relatively low if the objects 
are loosely coupled and will increase as the degree of coupling increases. 
The cost to develop strongly coupled objects will approach the cost asso- 
ciated with traditional software efforts. This represents an upper limit 
on the cost of software developed in an object-oriented manner. 

As a lower limit, the cost of object integration costs can be estimated 
using COCOMO by assuming that this effort is essentially equivalent to 
integrating program units. This is the case for Ada-unique object-oriented 
designs when objects are loosely coupled. For this situation, the follow- 
ing relationship can be used to establish the lower limit: 

(LOWER LIMIT FOR OBJECT)     - P(4)*MM(EQUIV) (3-5) 
IMPLEMENTATION INTEGRATION) 

210 



where P(4) is the percentage of software development cost associated with 
program unit integration, from Table 4; and MM(EQUIV) is the development 
cost for a number of program units equal to the number of objects to be 
developed (for all processes). The later factor is calculated again using 
Equation 2-3 (for Intermediate COCOMO) or Equation 2-9 (for Detailed 
COCOMO), applied to the number of source instructions obtained by 
multiplying the number of objects by the size of an individual program 
unit. As discussed in Paragraph 3.4.2(c), program units typically average 
approximately 49 source statements. Thus, as a lower limit, we assume that 
the cost to integrate '0' objects is equivalent to the cost to integrate 
'0' program units of 49 source statements each. 

3.2.2 Estimating the Number of Source Statements of Object-Oriented 
Ada Software 

In order to apply COCOMO with any degree of accuracy, a meaningful estimate 
of the number of Ada source statements is needed. For an object-oriented 
Ada computer program, this can be effectively accomplished by examining the 
object-oriented design established using the steps discussed in Section 2.2 
of Chapter IV. 

Specifically, the main Ada computer program will declare tasks for P 
processes (Step 1) and each of the P processes will be partitioned into 0 
objects (Step 2). The number of source statements (i.e., #SS) needed to 
implement the object-oriented Ada design is given by the following: 

p-P o-0(p) 
#SS - S  2 #DSI(p,o) (3-6) 

p-o  o-l 

where #DSI(p,o) is the number of source statements for the oth object in 
the pth process. The index p equal to zero refers to subprogram declared 
in the body of the main program. With Ada, the execution of these 
subprograms is undertaken until completion concurrently with processes 
established by tasks declared in the main program (in the time slice sense 
of the word). They, therefore, act for a period of time like a defacto 
process. Accordingly, we consider them the process associated with p equal 
to zero. 

The remainder of this subsection discusses three different methods that can 
be used to estimate #DSI(p,o). Method 1 utilizes algebraic relationships, 
which establish a count of the typical number of Ada statements needed to 
implement code represented by the graphics. Method 2 is based upon analo- 
gies to existing systems. Method 3 is based upon the "Theory of Sevens." 
Method 3, is the easiest to apply in practice, but the least accurate. 
Method 2 would be the most accurate, if SHARP were applied to several 
acquisitions in conjunction with a cost/metric data collection system so 
that a meaningful data base of design, cost and metric information became 
available. With such historical Information, meaningful analogies could be 
made. 

3.2.2a Method 1 - Algebraic Count Relationships 

The implementation of an object normally is encapsulated in an Ada package 
or task, and has a local state unique to it defined in a data structure 
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established in the package or task. An object package declares one or more 
procedures in its specification to facilitate inter-object communication. 
The bodies of the communication program units are implemented using a 
traditional structured/top-down design, with detail abstracted into levels. 
Each level contains one or more program units. Therefore, the number of 
delivered source instructions needed to implement the oth object of the pth 
process is given by the relationship: 

#DSI(p,o) - #DATA(p,o) + #PU(p,o) + #OPERS(p,o) (3-7) 

where for the oth object in the pth process, #DATA(p,o) is the number of 
source statements needed to establish the data structure; #PU(p,o) is the 
number of source statements needed to implement program unit calls and 
#OPERS(p,o) is the number of source statements to implement program unit 
bodies, exclusive of the data structure. The factor #DATA(p,o) is given 
by: 

#DATA(p,o) - #TYPES(p,o) + #CONSTS(p,o) + #VARS(p,o)     (3-8) 

where for the oth object in the pth process, #TYPES(p,o) is the number of 
source statements used to establish type definitions; #CONSTS(p,o) is the 
number of source statements used to define constants; and #VAR(p,o) is the 
number of source statements used to establish variables for the oth object 
of the pth process. 

The factor #PU(p,o) is given by: 

L(p,o) 
#PU(p,o) - S #SUBP(p,o,l) + 2*#WITHS(p,o,l) + #TASKS(p,o,1) (3-9) 

1-1 

where for the 1th level of the oth object in the pth process, #SUBP(p,o,l) 
indicates the number of subprograms used, #WITHS(p,o,1) indicates the 
number of Ada "with clauses" introduced, and #TASKS(p,o,1) indicates the 
number of tasks introduced. The factor "2" in Equation (3-9) is 
introduced to account for the assumption that Ada "use" clause typically 
will be applied in conjunction with the "with" clause. 

The factor #OPERS(p,o) in Equation 3-7 indicates the number of source 
statements needed to implement processing in the oth object of the pth 
process. It is derived from SHARP Annotated Pseudo Code (i.e., Step 7). 
For example, for each program unit within the 1th level of abstraction, the 
number of decisions can be counted, and the number of instructions needed 
to implement algorithms, generic instantiation and exception handling can 
be estimated by inspection of the annotated pseudo code. As an 
alternative, the 'Theory of Sevens' could be applied to help project the 
size of each program unit, as explained in Paragraph 3.2.2c. 

This method of source instruction estimation requires a competent designer 
who can map the software requirements into an object-oriented Ada design, 
for example, using an automated CAD system for establishing SHARP graphics. 
Then, by examination of the SHARP abstracts (either manually or 
automatically), the factors associated with Equations 3-7 to 3-9 can be 
established. 
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3.2.2b Method 2 - Analogies to Existing Software 

We could also estimate the number of deliverable source instructions by 
comparing System A to System B. In practice these systems are never 
equivalent (or why would one need to build the new system). Accordingly, 
parts that are similar need to be identified and isolated from parts that 
are different. With SHARP abstracts, this can be effectively accomplished 
by comparing the SHARP representation for System A to the SHARP representa- 
tion for System B. For example, the number of objects used in each system 
can be compared along with the number of program units used to implement 
each object. 

The number of source instructions associated with similar objects can be 
established, while new (or significantly different versions of existing 
objects) can be isolated. The number of source statements needed to 
implement the new software can then be established using Method 1. 

3.2.2c Theory of Sevens and Projecting the Number of Source statements 
Used to Implement a Program Unit's Body 

The psychologist George Miller performed studies in the 1950s that led him 
to the conclusion that the number of. entities humans can comprehend at one 
time is seven, plus or minus two. ' Beyond this limit, a concept is 
typically too complex for a human to understand. 

Booch in his book Software Engineering with Ada calls this the Hrair limit 
and states the following: 

"Clearly, developing software systems is a problem-solving 
activity, and so the Hrair limit seems to apply.  We suggest 
that the principles of software engineering can help us 
decompose systems so that, at each level of the solution, 
the number of entities we must deal with at one time lies 
within the Hrair limit." 

Assuming this to be true, we can establish bounds on the number of source 
instructions that typically will be used by programmers to implement 
the bodies of Ada subprograms and tasks. As discussed in Chapter II, a 
designer will use abstraction in the design of a program unit's body. A 
small and easily comprehended number of source statements will typically be 
needed to implement the body of each Ada program unit, since lower level 
detail is passed to other called program units. In establishing and 
implementing the body of each program unit, we might hypothesize that the 
comprehension of programmers will be limited to 7 + 2 instructions per Ada 
block of code, and 7+2 blocks of code per Ada program unit. This results 
in the boundaries on the number of Ada source statements a programmer will 
use the implementation of Ada blocks, and program units as follows: 

Ada Block:   5 (low)   7 (medium)    9 (high) 
Ada Program Unit:   25 (low)  49 (medium)   81 (high) 

These factors could be used to form the basis for estimating the number of 
Ada source statements that are expected to be used to implement the bodies 
of Ada subprograms and tasks. 
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The estimator could rate the size and complexity of each program unit as 
either very low, low, nominal, high or very high. Then, based upon the 
Theory of Sevens, project the program unit's size using the source 
statement counts shown in Table 5. 

TABLE 5    SOURCE INSTRUCTIONS FOR THE BODIES OF 
ADA SUBPROGRAMS AND TASKS BASED UPON 
THE THEORY OF SEVENS 

Number Ada Source Statements 

Size/Complexity Rating Ada Block    Body of Ada Subprogram or Task 

Very High 

High 

Nominal 

Low 

Very Low 

9 

7 

5 

81 

65 

49 

37 

25 

3.2.3 Selecting Attributes for Object-Oriented Ada Software Development 

Once the size of an Ada computer program has been established, other 
information characterizing the acquisition must be considered. With 
COCOMO, this information is accounted for in cost-driver attributes. 
Values selected for many of these attributes are driven by unique Ada 
factors. 

Initially, cost drivers will be affected by the lack of personnel with Ada 
experience, compiler problems, incomplete Ada Programming Support Environ- 
ments, uncertainties with the compiler validation process and the ineffi- 
ciency of the new compilers. In the future, a base of Ada experienced 
personnel with knowledge of comprehensive and standard support environments 
will affect the cost drivers. As Ada technology matures, cost drivers for 
target machine characteristics and tool support level must reflect that 
maturity. 

3.2.3a Product Attributes 

The COCOMO attributes characterizing the product to be developed as follows 
are : 

• A1  (Required Software Reliability) 

• A_  (Data Base Size) 

• A.  (Product Complexity) 
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Values for attributes A- and A- are essentially a function of product 
requirements and not the implementation methodology. The value for 
attribute A- can be selected to reflect the possible simplification of a 
product's complexity introduced by an object-oriented design, since (a) the 
design is well structured, (b) complex dependency relationships have been 
reduced and (c) potential compilation problems have been diminished (i.e., 
by restricting object implementations to sizes that will compile in a 
timely manner). 

3.2.3b Computer Used 

The COCOMO attributes characterizing the computer to be used are as 
follows: 

• A, (Execution Time Constraints) 
• A,. (Main Storage Constraints) 
• A, (Virtual Machine Volatility) 
• A? (Computer Turnaround Time) 

The value for attribute A. can be selected to reflect inefficiencies on an 
Ada compiler, although such inefficiencies will diminish somewhat with 
time. The value for attribute As can be selected to reflect the verbosity 
of the Ada language relative to languages used to calibrate COCOMO. The 
value for attribute A, can be selected to reflect high volatility in the 
short-term, although historic norms should be reached in the long-term. 
The value for attribute A can be selected to reflect the processing 
capabilities available relative to the amount of Ada code to be produced. 
This value can take into account the reduction in compilation problems 
introduced by proper object-oriented designs, or the magnification of 
compilation problems introduced by inappropriate design approaches. 

3.2.3c  Development Personnel 

The COCOMO attributes characterizing personnel to undertake the software 
development effort are as follows: 

A„ (Analyst Capability) 
Aq (Application Experience) 
A10 (Programmer Capability) 
A (Virtual Machine Experience) 
A-„ (Programming Language Experience) 

The value for these attributes can be selected to reflect the inherent 
capabilities of the contractor responsible for the development of the Ada 
software. It is anticipated that these capabilities will improve with 
time, as the DoD software community becomes knowledgeable in Ada. 

3.2.3d Other Attributes 

Other COCOMO attributes are as follows: 

• A1_ (Use of Modern Programming Practices) 
• A1  (Level of Tool Support) 
• A1  (Schedule Constraint) 
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The fact that Ada facilitates several modern programming capabilities 
should be reflected in the value selected for attribute A1» . For example, 
in addition to providing a mechanism for implementing object-oriented 
designs, Ada promotes general purpose program units through its generics 
capabilities, facilitates exception handling, and facilitates abstraction 
within data structures and the implementation of object complexities. 

The high level of tool support provided by Ada Programming Support 
Environments (APSEs) can be reflected in the value selected for attribute 
A... . When making this selection, an estimator must make sure that selected 
APSE tools apply to the target computing system as well as the host. The 
value selected for attribute A, _ can take into account the amount of time 
available relative to the time required to build object-oriented Ada 
software, which should prove to be substantially less than traditional 
techniques. 

3.3  ESTIMATING THE TIME DURATION FOR SOFTWARE DEVELOPMENT (SCHEDULE) 

COCOMO can be used to project the time duration expected for a software 
development effort. This projection is made as a function of the cost 
estimate using the following relationships: 

0 38 
TDUR - 2.5(MM)"'^° (Organic Mode) 
TDUR - 2.5(MM)JJ"^ (Semidetached Mode) 
TDUR - 2.5(MM) (Embedded Mode)    (3-10) 

In practice, one should estimate, on an object-by-object basis, the time 
required to complete the various major activities associated with the 
development of a large and complex Ada computer program, including the 
development of a non-deliverable support software needed to develop the 
deliverable computer program. Then, using a PERT diagram (or equivalent), 
the time duration of the various software development tasks should be 
interrelated to establish the time duration in months for the overall 
software development project. 

4.   EXAMPLE 

4.1  INTRODUCTION 

Consider the hypothetical situation where the government must make a 
decision as to (a) what programming language it will specify in the 
development of a large and complex, embedded computer program; and (b) when 
the development effort should start. 

In order to make this decision, the government contracts with an 
engineering firm, which is to establish cost estimates for different 
possible object-oriented Ada efforts. Specifically, projections are to be 
made for an effort to start in the short-term and for an effort to start at 
a later date. Also, as a possible alternative, the engineering firm is to 
estimate the cost to develop the software if a traditional top-down struc- 
tured design is implemented using a FORTRAN/assembly language combination. 
Historically, this combination has been applied in about 2/3 of embedded 
systems acquired af. the Electronic Systems Division (ESD) of the Air Force 
Systems Command. *•" 
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As a first step in establishing these estimates, the estimator establishes 
cost driver attributes characterizing the software acquisition for the 
application of Ada on the short-term and in the long-term, and for the 
application of the FORTRAN/assembly language combination.  The results of 
this analysis are shown in Section 4.2. 

Second, the estimator works with a software designer to project the number 
of source statements required to implement the object-oriented Ada software 
and the FORTRAN/assembly language software. The results of this analysis 
are shown in Section 4.3. 

Then, the estimator applies algorithms described in Sections 2 and 3 to 
establish cost projections. 

4.2  ESTABLISHING ATTRIBUTES 

The COCOMO attribute inputs selected for each effort by an estimator are 
shown in Table 6. He set ten of the COCOMO attribute inputs to "nominal." 
Thus, these attributes were not varied as a function of the programming 
language to be used in relation to time of the development effort (i.e., 
short-term or long-term). Rather, they were used to establish a nominal 
definition of the software product (i.e., its required reliability, data 
base size and complexity), the processing capability available (i.e., main 
storage capacity, execution time capacity, and turnaround time), the 
inherent ability of development and maintenance personnel (i.e., their 
capability and experience in the application problem domain to be program- 
med), and the schedule followed in the development of the software product. 

The other five COCOMO attributes were assumed to account for cost differ- 
ences due to the language used in relation to the time the development 
effort was to be undertaken. The attribute Virtual Machine Volatility 
accounts for the relative frequency of changes that must be made to main- 
tain the virtual machine, defined to be the hardware and software utilized 
in conjunction with the execution of the application software (i.e., the 
computer hardware, operating system, run-time system, and compiler). This 
factor was set too high (i.e., one week to two months between changes) for 
the development of Ada software in the short-term, and too low (i.e., one 
month to twelve months between changes) for development of Ada software in 
the long-term. In the short-term, the estimator anticipates that the 
application of Ada will uncover errors in the software of the virtual 
machine. It has been found in the past that during initial applications of 
a new language, such software is error prone. Critical bugs have to be 
fixed and necessary features have to be added. In the long-term, the 
estimator assumed that most of these problems will have been resolved. 

The attributes Virtual Machine Experience and Programming Language 
Experience were varied in the same manner to account for the general 
experience of the available work force in the application of Ada. These 
attributes were set to low (i.e., four months average experience) for 
development of Ada software in the short-term, and to high (i.e., three 
years or more average experience) for the development of Ada software in 
the long-term. Initially, few experienced Ada programmers will be avail- 
able, but this will not be the case in the long-term. 
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TABLE 6 NUMERICAL VALUES SELECTED FOR COEFFICIENTS 

Coeff. Values — Development 

Category   Input Attribute 

Product    Required Software Reliability 
Data Bate 8iac 
Product Coaplaxity 

Coaputer   Execution Time Constraint 
Main Storage Constraint 
Virtual aackiaa Volatility 
Coaputer Turnaround Tic* 

Personnel  Analyst Capability 
Applications Experience 
Prograaaer Capability 
Virtual Mac bias Experience 
Progra—llaj Lang. Experience 

Project    Modem Programing Practices 
Lreel of Tool Sapport 
Required Development Schedule 

Range Ada Range Ada Fortran  a 
Coeff. Short Term Long   Tern: Asseably 

Cl 1.00 1.00 1.00 
c2 1.00 1.00 1.00 
C3 1.00 1.00 1.00 

C4 1.00 1.00 1.00 

C5 1.00 1.00 1.00 
<* 1.12 0.87 0.87 
C7 1.00 1.00 1.00 

C8 1.00 1.00 1.00 
C9 1.00 1.00 1.00 
C10 1.00 1.00 1.00 
Cll 1.0S 0.90 1.00 
Cl2 1.06 0.95 1.00 

«n 0.89 0.82 1.00 
cu 0.89 0.83 1.00 
Cl5 1.00 1.00 1.00 
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The attribute Modern Programming Practices was varied to indicate the 
extent to which such capabilities of Ada are to be exploited. This attri- 
bute was set to high (i.e., above average application) for the development 
of Ada software in the short-term. This attribute was set to very high 
(i.e., extensively and efficiently used) for the development of Ada soft- 
ware in the long-term. 

The attribute Use of Software Tools was varied to indicate the extent to 
which Ada programming support tools are applied. This attribute was set to 
high (i.e., strong use of tools) for the development of Ada software in the 
short-term. This attribute was set to very high (i.e., heavy use of 
advanced tools) for the development of Ada software in the long-term. The 
estimator assumed that programmers will take advantage of Ada programming 
support. He also assumed that in the short-term, APSEs will encompass a 
necessary and sufficient set of tools needed to develop Ada software, and 
in the long-term, a comprehensive set of such tools will be incorporated 
into APSEs, for both host and target machines. 

The numerical values chosen for the coefficients, corresponding to the 
COCOMO input attributes, are also shown in Table 6. They were established 
by relating attribute ratings to the corresponding coefficient numerical 
values defined in Software Engineering Economics, which are shown in 
Appendix D. The coefficients associated with the ten COCOMO attributes, 
not varied as a function of the language used in relation to when the 
effort was undertaken, were all set to unity (i.e., the coefficient 
numerical value for a nominal attribute setting). Each of the coefficients 
associated with the other five COCOMO attributes, were assumed to account 
for cost differences due to the language to be used in relation to the time 
the development effort was to take place. 

4.3  ESTIMATING THE SIZE METRIC 

As a prerequisite to establishing an accurate projection for the size 
metric, a designer establishes an object-oriented design for the embedded 
software using a new automated SHARP system (e.g., the system described in 
Chapter IX). The automated system produces an estimate of the size metric. 
In order to understand this projection, the estimator decides to inspect 
the set of SHARP abstracts produced to represent the object-oriented Ada 
design. 

First. the estimator reviews the SHARP representation of the main program 
to identify the number of processes established by the designer. He finds 
that the requirements for the embedded computer program have been 
distributed into 10 concurrently executing processes (e.g., in a manner 
similar to the processes shown in Figure 59 in Chapter IV). 

Second, the estimator reviews SHARP object layer diagrams established by 
the designer for each process. He finds that requirements assigned to each 
process have been distributed to several objects (e.g., in the manner shown 
in Figure 60 in Chapter IV). Specifically, the number of objects per 
process, 0(p), are as follows: 
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0(1)-10 
0(2)-L2 
0(3)- 9 
0(4)- 8 
0(5)-ll 

0(6)-12 
0(7)-14 
0(8)- 9 
0(9)- 8 

0(10)- 7 

Third, the estimator reviews the SHARP data structure diagram prepared for 
each object (e.g., in the manner shown in Figure 64 in Chapter IV). Using 
Equation 3-8, he estimates the number of Ada source statements needed to 
implement the data structures, #DATA(p,o). The results are shown in Table 
7. For example, for the first object of the first process, he finds the 
following: 

#TYPES(1,1) - 20 
#C0NSTS(1,1) - 15 
#VARS(1,1)   - 55 

Therefore, using Equation 3-8: 

#DATA(1,1) - #TYPES(1,1) + #C0NSTS(1,1) + #VARS(1,1) - 90 

Fourth, the estimator reviews SHARP hierarchy diagrams established by the 
designer to represent the hierarchy of program units used to implement the 
internal complexities of each object (e.g., in the manner shown in Figure 
62 of Chapter IV). Using Equation 3-9, he estimates the number of Ada 
source statements needed to facilitate the structures shown for oth object 
in the pth process, #PU(p,o). For example, for the first object of the 
first process, he finds the following: 

#SUBP(1, 1, ,D - 1 
#SUBP(1, 1, ,2) - 2 
#SUBP(1, 1, ,3) - 4 
#SUBP(1, 1 ,4) - 3 
#SUBP(1, 1 ,5) - 4 
wSUBP(l, 1 ,6) - 6 
#SUBP(1, 1 ,7) = 2 

#WITHS(1,1,1) - 0 
#WITHS(1,1,2) - 1 
#WITHS(1,1,3) - 0 
#WITHS(1,1,4) = 2 
#WITHS(1,1,5) - 2 
#WITHS(1,1,6) - 0 
#WITHS(1,1,7) = 2 

#TASKS(1,1,1) = 0 
#TASKS(1,1,2) - 2 
#TASKS(1,1,3) - 0 
#TASKS(1,1,4) - 4 
#TASKS(1,1,4) - 0 
#TASKS(1,1,6) = 0 
#TASKS(1,1,7) - 0 

Therefore, using Equation 3-9, the following applies to the first object of 
the first process: 

7 
#PU(1,1) - 2 {#SUBP(1,1,1) + 2*#WITHS(1,1,1) + #TASKS(1,1,1)) 

1-1 
-1+6+4+11+8+6+6-42 
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TABLE 7 

SIZE DATA 

£ a. 

# Source States to Implement 

Data Structure 
#DATA(p.o^ 

Program Unit Operations/ 
Calls      Logic in Bodies 
#PU(p.o)     #0PERS(p.o) 

Total # 
Source 
Statement 
*DSI(p.o) 

1 90 42 1385 1517 

2 150 30 1250 1430 

3 75 20 1550 795 

4 75 20 700 795 

5 95 25 1020 1140 

6 107 30 1275 1412 

7 95 40 1405 1540 

8 85 38 1500 1623 

9 95 40 1600 1735 

10 100 45 1800 1945 13.932 

i 160 40 1200 1400 

2 40 10 300 350 

3 80 20 600 700 

^ 120 30 950 1100 

5 90 20 620 730 

6 80 15 475 570 

7 60 12 380 452 

8 90 25 750 865 

9 120 30 800 950 

10 80 20 500 600 

11 150 40 1100 1290 

12 50 10 300 360 9367 
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E       o 

TAB: LE 7 

(Cont: Lnued) 

# Source States to Implement 
Total # 

Program Unit Operations/ Source 
Data Structure Call s Logic in Bodies Statemnts 

o #DATA(p.o) #PU(D. o) #0PERSCD.O} #DSI(p.o) 

1 40 12 336 338 

2 90 38 1330 1458 

3 80 27 783 890 

4 70 33 1023 1126 

5 90 29 870 1019 

6 90 18 576 684 

7 130 35 1365 1530 

8 140 30 1020 1190 

9 55 32 1184 1271 9506 

1 75 37 1036 1148 

2 92 27 891 1010 

3 110 32 992 1134 

4 120 29 1073 1222 

5 80 16 496 592 

6 70 12 360 442 

7 60 19 627 706 

8 50 15 540 605 6.859 
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TABLE 7 

(Continued) 

# Source States to Implement 
Total # 

Program Unit   Operations/     Source 
Data Structure     Calls    Logic in Bodies  Statemnts 

#DATA(p.o)     #PU(p.o)     #OPERS(p.o)    #051(0.0) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

90 

102 

125 

85 

132 

96 

87 

50 

40 

90 

120 

35 

37 

40 

31 

38 

31 

25 

34 

16 

27 

29 

1085 

1036 

1160 

1023 

1026 

775 

800 

1122 

448 

837 

986 

1215 

1175 

1325 

1139 

1196 

902 

912 

1206 

504 

954 

1135 11.663 

6  1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

90 

80 

95 

115 

130 

110 

80 

50 

40 

60 

70 

50 

17 

15 

25 

29 

32 

28 

12 

14 

16 

23 

31 

13 

544 

435 

835 

986 

864 

840 

432 

434 

528 

713 

961 

351 

651 

530 

955 

1130 

1026 

978 

524 

498 

584 

796 

1062 

414 9.148 
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TABLE 7 

(Cont: Lnued) 

# Source States to Implement 
Total # 

Program Unit Operation/ Source 
Data Structure Calls Logic in Bodies Statemnts 

12 0 #DATA(p.o) #?V(x>.o) #0PERS(D.O) #DSI(p.o) 

7 1 110 31 992 1133 

2 95 27 783 905 

3 55 14 504 573 

4 75 16 528 619 

5 95 19 551 665 

6 85 23 736 844 

7 115 27 842 984 

8 110 25 754 889 

9 60 12 371 443 

10 80 17 522 619 

11 90 16 514 620 

12 120 34 1020 1174 

13 70 18 579 685 

14 135 37 1147 1319 11.472 

S 1 55 15 467 537 

2 75 18 601 694 

3 110 24 768 902 

4 50 17 559 626 

5 55 19 645 718 

6 50 23 713 786 

7 40 16 443 499 

8 65 31 926 1022 

9 70 32 878 980 6.765 
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TABLE 7 

(Concluded) 

# Source States to Implement 
Total # 

Program Unit   Operation/      Source 
Data Structure     Calls    Logic in Bodies  Statemnts 

E  o    #DATA(p.o)     #PU(p.o)     #OPERS(p.o)    #DSI(p.o) 

12 

17 

21 

19 

13 

10 

15 

13 

15 

16 

22 

14 

31 

28 

30 960 1080     5_JZ_ 

1 40 

2 45 

3 35 

4 55 

5 60 

6 40 

7 50 

8 40 

1 70 

2 80 

3 90 

4 60 

5 75 

6 65 

7 90 

363 415 

527 589 

693 749 

608 682 

403 476 

324 374 

519 584 

403 456 

452 537 

480 576 

682 704 

420 494 

868 974 

840 933 

960 1080 

225 



The results for all objects are shown in Table 7. 

Fifth, the estimator reviews annotated pseudo code prepared to represent 
the bodies of program units used to implement each object. He establishes 
an estimate of the number of source statements for each body, knowing 
through experience the relationship between pseudo code and actual Ada 
code. For example, for the first object of the first process, he finds the 
following: 

#B0D(1,1,1) - 55 
#B0D(1,1,2) - 180 
#B0D(1,1,3) - 260 
#B0D(1,1,4) - 350 
#B0D(1,1,5) - 250 
#B0D(1,1,6) - 375 
#B0D(1,1,7) - 115 

Therefore, it follows that: 

7 
#0PERS(1,1) - 2 #B0D(1,1,1) - 1385 

1-1 

The results for all objects are also shown in Table 7. 

Sixth, the estimator uses Equation 3-7 to estimate the number of delivered 
source statements to implement each object in each process, #DSI(p,o). For 
example, for the first object of the first process, he finds the following: 

#DSI(1,1) - #DATA(1,1) + #PU(1,1) + #0PERS(1,1) 
or 

#DSI(1,1) - 90 + 42 + 1385 - 1517 

The results of all objects are shown in Table 7. 

Seventh, the estimator uses the results in Table 7 and Equation 3-6 to 
estimate the number of source statements to implement the object-oriented 
Ada design, #SS, as follows: 

P  o(p) 
#SS = S  2   #DSI(p,o) 

p=o  o-l 

10 12 9 
#SS - 400 + 2 #DSI(l,o) + 2 #DSI(2,o) + 2 #DSI(3,o) 

o-l o-l o-l 
8 11 12 

+ S #DSI(4,o) + 2 #DSI(5,o) + 2 #DSI(6,o) 
o=l 0=1 o-l 
14 9 8 7 

+ 2 #DSI(7,o) + 2 #DSI(8,o) + 2 #DSI(9,o) + 2 #DSI(10,o) 
o-l o-l o-l o-l 

- 400 + 13,932 + 9,367 + 9,506 + 6,859 

+ 11,663 + 9,148 + 11,472 + 6,765 + 4,325 + 5,298 - 88.335 
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4.4 PROJECTING DEVELOPMENT COSTS 

Having established attributes and a size metric, the estimator can now 
calculate projections for the cost of the object-oriented Ada-unique 
versions of the embedded computer program. 

4.4.1 Object-Oriented Ada (Short-Term Costs) 

With the chosen cost driver attributes for the software development effort 
to be undertaken in the short-term and the estimate of the size metric for 
each object, the estimator proceeded with the short-term cost calculation. 
Specifically, he established the 3 cost factors of Equation 3-1: 

• Design cost 
• Object implementation cost 
• Object integration cost 

4.4.1a  Calculating Design Costs 

Equation 3-2 was applied to establish the first factor, design costs. The 
factor '% DESIGN' was calculated by adding together the percentage of 
software development costs associated with product design, P(l), to the 
percentage of software development costs associated with detailed design 
costs, P(2). P(l) and P(2) were selected from Column 4 of Table 4 (under 
128 KSDI) resulting in: 

% DESIGN - P(l) + P(2) - 18 + 25 - 43% 

The factor MM(TOTAL) was calculated using Equation 2-3 as follows: 

MM(TOTAL) - (C * C* . . .C., )K(DSI/1000)**E 

MM(TOTAL) - (1*1*1*1*1*1.12*1*1*1*1*1.08*1.06*.89*.89*1) 
*2.8(88,335/1000)**1.2 - 618.2 

Therefore, applying Equation 3-2: 

(DESIGN COST)- (% DESIGN/100)*MM(TOTAL) - (43/100)*618.2 - 265.8 

4.4.1b Calculating Object Implementation Costs 

Equation 3-4 was applied to establish the second factor of Equation 3-1, 
object implementation costs. The factor P(3), the percentage of the 
software development cost associated with program unit code and test was 
found in Column 4 of Table 4 (under 128KDSI) to be 26%. The factors 
MM(p,o) were calculated using Equations (2-5) to (2-8) of Intermediate 
COCOMO and the productivity associated with 2000 source statements as 
follows: 

1. Applying Equation 2-5 for a 2000 source statement module, 
m^  - 2.8(2000/1000)**1.2 - 6.43 manmonths 

2. Applying Equation 2-6, 
NOM PROD - 2000/6.43 - 311 source statements/manmonth 
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3. Applying Equation 2-7, the nominal cost of the oth object on the 
pth process is given by: 

M^p.o) - DSI(p,o)/311 

4. Applying this result in Equation 2-8, 
MM(p,o) - C (p,o)*C (p,o)...C (P,o)*royP,o) 

- cJCp.o^CjCp.o)*. . .CJ5(p,o)*D§I(p,o)/3U 

5. Applying Equation (3-4), it follows that the Object 
Implementation Cost (OIC) is calculated as follows: 

P  0(p) 
OIC - P(3) S  S MM(p.o) 

p-1 o-l 
P  0(p) 

- P(3)* X      E C <p,o)*C2(p,o)....C15(p,o)*DSI(p,o)/311 
p-1 o-l 

6. Setting C. (p,o)*C„(p,o) ....C1 (p,o) to a constant for all 
values of p,o with the values shown in Table 4-1, it follows that 

P  0(p) 
OIC - P(3)*K S  E DSI(p,o)/311 

p-1 o-l 

- P(3)*K*#SS/311 
- .26*1.0156*88,335/311 - 75.0 man-months 

This calculation was not made directly using Equation (2-3), since the size 
of Ada object implementation is typically less than 2000 source statements 
and Equation (2-3) is applicable only for 2000 or more source statements. 
Accordingly, the component estimation approach described in Section 2.3.3 
was applied based upon the productivity associated with a 2000 source 
statement object. 

4.4.1c  Calculating Object Implementation Integration Costs 

Equation 3-5 was applied to establish a lower limit on the third factor, 
object implementation integration costs. The percentage of software 
development costs associated with program unit integration P(4), was found 
to be 31% in Column 4 of Table 2-3 (under 128KDSI). The factor MM(EQUTV) 
was calculated using Equation 2-3 as follows: 

MM(EQUIV) - (C * C * ...C  ) K (DSI(EQUIV)/1000)**E 
= (1*1*1*1*1*1.2*1*1*1*1*1.08*1 06*.89*.89*1)2.8(4900/1000)**l.2 - 19.2 

where the integration of 100 objects was assumed equivalent to integrating 
100 program units of 49 source statements each (i.e., the probable size of 
a program unit per the Theory of Sevens, as shown in Table 5).  Therefore, 

(Lower Limit for Object 
Implementation Integration) - .31*19.2 - 6.0 

4.4.Id Total Short-Term Costs 

Thus, the lower limit on the cost in the short-term is established using 
Equation 3-1 as follows: 
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Lower Limit on Ada 
Short-Term Costs   -  {Design Cost) + {Object Implementation Cost) 

+ {Object Implementation Integration Cost) 
- 265.8 + 75.0 + 6.0 - 346.8 manmonths 

The upper limit is established directly using Equation 2-3 of Intermediate 
C0C0M0 as follows: 

Upper Limit on Ada _        .. r ,)K(DSI/1000)**E 
Short-Term Costs      12     15     ' 

-(1*1*1*1*1*1.12*1*1*1*1*1.08*1.06*.89*.89*1) 2.8(88,335/1000)**l.2 - 615.5 
manmonths 

In practice, if the objects are sufficiently decoupled, the lower limit 
would provide the more accurate estimate of the software development cost. 
As the coupling of objects increases, the cost of the software development 
would tend to drift toward the upper limit, depending upon the extent of 
object coupling introduced. 

4.4.2 Object-Oriented Ada (Long-Term Costs) 

The estimator then modified his estimate of the object-oriented Ada effort 
made for the short-term effort to establish the cost estimate applicable to 
the long-term. Specifically, he changed the cost driver attributes as 
shown in Table 4-1. With the new cost driver attributes, the estimator 
established the following projection: 

Lower Limit on Long-Term Costs - 172.9 manmonths 

Upper Limits on Long-Term Costs- 306.8 manmonths 

4.4.3 FORTRAN/Assembly Language Costs 

The estimator then applied the cost drivers he chooses to estimate the 
software development effort undertaken using the FORTRAN/assembly language 
combination and a traditional structured top-down design. 

The estimator was not sure that the size metric used to make the object- 
oriented Ada projection was applicable to the FORTRAN/assembly language 
projection, having read the following in The Analytic Sciences Corporation 

/      report entitled "The Impact of Ada on Software Development Costs:"11 

"Software Size Impact - The number of delivered source lines of 
code (DSLOC) or delivered, executable, machine-level instructions 
(DEMI) that will be required to program an application using Ada 
will differ from the amount required to program the same 

t application in another HOL.  Certain features of Ada will cause a 
reduction in the DSLOC, while others will cause an increase. For 
example, the richness of the Ada language requires fewer DSLOC to 
achieve certain functions, while the requirement for disciplined, 
explicit declaration of data items requires more DSLOC." 
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The estimator investigated this matter and found that Software Productivity 
Research, Inc. of Cambridge, Massachusetts had published numbers relating 
the verbosity of Ada to FORTRAN and assembly language. Specifically, their 
data indicates that FORTRAN is 48% more verbose than Ada and assembly 
language is 250% more verbose than Ada.12 Using these relative verbosity 
numbers and assuming that 20% of the FORTRAN/assembly language combination 
would be written in assembly language, the estimator calculated that the 
FORTRAN/assembly language combination would be 1.9 times more Ada (i.e., 
.2*3.5 + .8*1.48 - 1.884). He then assumed a ± 20% error in this relative 
verbosity and established the #SS for the FORTRAN/assembly language 
combination with the following: 

#SS (FORTRAN/assembly) - {1.9* #SS (Ada)} ± 20% - 167,837 ± 20% 

As indicated by Boehm in his book Software Engineering Economics, the cost 
to develop software is a direct function of the number of source statements 
that must be developed. The estimator made this assumption and using 
Equation (2-3), he made the following calculations: 

Lower Limit on FORTRAN 
Assembly Language Costs - .87*2.8(134,269/1000)**l.2 - 871.5 manmonths 

Upper Limit on FORTRAN 

Assembly Language Costs - .87*2.8(201,404/1000)**!.2 - 1417.6 manmonths 

The results of the set of cost projections are shown in Table 8. 

4.5  CONCLUSIONS 

An estimator must understand factors that will affect the cost of Ada 
software development. A cost model must be chosen that can account for the 
Ada-unique factors. 

In this chapter, a special algorithm has been formulated for estimating the 
cost to develop Ada software in an object-oriented manner. C0C0M0 was used 
as the basis for estimating factors within the special algorithm, since: 

• Studies have indicated that C0C0M0 exhibits reasonable 
accuracy in the estimation of software life-cycle cost when 
its inputs are chosen correctly. 13 

• C0C0M0 predicts costs as a function of model inputs that can 
be selected to account for Ada's expected impact in both the 
short-term and long-term on compiler performance, programmer 
experience, use of modern programming practices and software 
tools. Proponents of Ada predict that these factors have a 
significant effect on cost savings in the long-run. 
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TABLE 8 

COST/SCHEDULE ESTIMATES FOR HYPOTHETICAL SOFTWARE 

DEVELOPMENT APPROACH COST (ManMonths) 

Object-Oriented Ada 346.8 to 615.5 
(Short-Term) 

Object-Oriented Ada 172.9 to 306.8 
(Long-Term) 

FORTRAN/Asserably 871.5 to 1417.6 
Language Combination 

#SS - 88,335 
K - 2.8 
E - 1.2 

C C„, ... C  set per Table 4-6 
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• Comprehensive documentation exists describing how to select 
numerical values for input factors. 

• COCOMO can be used to project the cost to design Ada 
software and implement individual objects.  These are basic 
cost factors in the special algorithm applicable to object- 
oriented design. 

The results of applying the special algorithm for the estimation of 
object-oriented Ada software in a hypothetical system are shown in Table 
8. The range of cost values shown for the development object-oriented Ada 
software account for the extent of decoupling between objects. Objects 
that are strongly decoupled will cost must less to develop than objects 
that are strongly coupled. In the limit, the cost to develop strongly 
coupled objects will approach the cost to develop Ada software in a tradi- 
tional manner (i.e., with strong dependencies between types, variables and 
program units). In our example, strongly decoupled objects cost less than 
70% of the cost incurred in developing strongly coupled objects. 

Additional significant savings with Ada are expected in the long run due to 
positive affects of a standardization on such software acquisition attri- 
butes as virtual machine stability, personnel experience and use of soft- 
ware tools. 

5.  FUNCTION POINT ANALYSIS 

The size metric algorithm presented in Section 3.4.2 can be used in 
conjunction with SHARP abstracts to project the number of Ada source 
statements needed to implement an Ada computer program. Factors in the 
algorithm are derived from the SHARP abstracts that represent the 
object-oriented Ada design for the computer program. 

As an alternative during cost estimation, SHARP abstracts could be used to 
establish factors associated with function point analysis, to provide a 
straight forward and fast way to establish the size metric. The size 
metric can be projected as a function of a metric referred to as Function 
Point Total (FPT) , which was developed by Allen Albrecht of IBM over the 
last decade.  It is defined by the following relationship: 

FPT -{Complexity Adjustment) *  {4*#Inputs + 5*#0utputs 

+ 4*#Inquiries + 10*#Data Files + 7*#Interfaces}    (5-1) 

where #Inputs refers to both data and control information entering a 
computer program from the an external source; #0utputs refers to both data 
and control information leaving the computer program for an external 
source; #Inquiries refer to such things as 'HELP' screens and selection 
menus; #DATA Files include flat files on tape or disk, a 'leg' of a 
hierarchical data base and a table in a relationship data base; and 
#Interfaces are defined as files passed between or shared among separate 
applications. The Complexity Adjustment factor ranges from .75 to 1.25. 
(In 1985, the Albrecht methodology modified the original complexity adjust- 
ment to multiple complexity adjustments -- one for #Inputs, one for 
^outputs, one for #Inquiries, one for #Data Files and one for #Interfaces.) 
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Software Productivity Research, Inc. of Cambridge, Massachusetts has 
developed a product that projects the number of source statements it will 
take to implement a computer program as a function of the Function Point 
Total. As shown in Table 9, the software product (referred to as SPQR ) 
establishes the number of source lines per function point for 30 program- 
ming languages, including Ada. In Table 9, the 'level' of a language is 
defined as the approximate number of assembler language statements that an 
experienced programmer would write to create the effect of one source 
statement in the language being used. Source code statements are defined 
in SPQR as consisting of executable statements and data definitions. 

The factors used to calculate an object's Function Point Total could be 
established by inspection of SHARP abstracts. For example, SHARP data flow 
diagrams for program units facilitating data transfer into and out of an 
object implementation could be used to identify the factors #Inputs and 
#0utputs for the object; and the SHARP data structure diagram for an object 
could be used to help establish #Inquiries, #Data Files and #Interfaces. 

6.   CHAPTER SUMMARY 

C0C0M0 cannot be directly used to estimate the cost to develop Ada software 
in an object-oriented manner. However, by applying C0C0M0 in a special 
manner, the parts of an object-oriented effort can be individually 
assessed. Namely, design costs, object implementation costs and object 
implementation integration costs can be individually addressed. Design 
costs can be estimated using C0C0M0 by assuming that these costs would be 
essentially equivalent to the costs incurred using a traditional design, 
which is projected by C0C0M0. Object implementation costs can be estimated 
by assuming that the development of each object is essentially an indepen- 
dent effort and applying COC0MO directly to each of these efforts. 

Object integration costs cannot actually be estimated using C0C0M0. 
However, as a lower limit, the integration effort can be assumed to be 
essentially equivalent to that of integrating program units, since loosely 
coupled object interfaces ideally should not be more complicated than 
typical program unit interfaces. 

Using these assumptions in an example, we found that the cost to develop 
Ada software consisting of strongly decoupled objects is less than 70% of 
the cost incurred in developing strongly coupled objects. In practice, the 
cost of Ada software developed in an object-oriented manner depends upon 
the extent of decoupling between objects. In the limit, the cost to 
develop strongly coupled objects would approach the cost to develop highly 
coupled software with strong dependency relationships. 

When applying C0C0MO, whether directly in projecting the costs of highly 
coupled software components or indirectly in projecting the cost of 
decoupled object-oriented Ada software, the size of the software is the key 
input parameter to the C0C0M0 model. Using SHARP abstracts, the size 
metric can be estimated directly as a function of the computer program's 
design or the Function Point Total. 

TM - - SPQR is a trademark of Software Productivity Research, Inc, 

233 



TABLE 9 

NUMBER OF COMPUTER PROGRAM SOURCE STATEMENTS 
PER FUNCTION POINT TOTAL 

SOURCE LANGUAGES AND LEVELS IN SPQR 

Language 

1. Basic Assembler 
2. Macro Assembler 
3. C 
4. ALGOL 
5. CHILL 
6. COBOL 
7. FORTRAN 
8. Mixed Languages (Default) 
9. Other Languages (Default) 
10. PASCAL 
11. RPG 
12. PL/I 
13. MODULA 2 
14. Ada 
15. PROLOG 
16. LISP 
17. FORTH 
18. BASIC 
19. LOGO 
20. English-Based Languages 
21. Data Base Languages 
22. Decision Support Languages 
23. Statistical Languages 
24. APL 
25. OBJECTIVE-C 
26. SMALLTALK 
27. Menu-Driven Generators 
28. Data Base Query Languages 
29. Spread-sheet Languages 
30. Graphic Icon Languages 

Level 

1 
1.5 
2.5 
3 
3 
3 
3 
3 
3 

3.5 
4 
4 
4 

4.5 
5 
5 
5 
5 

5.5 
6 
8 
9 

10 
10 
12 
15 
20 
25 
50 
75 

Source Lines Per 
Function Point 

320 
213 
128 
105 
105 
105 
105 
105 
105 
91 
80 
80 
80 
71 
64 
64 
64 
64 
58 
53 
40 
35 
32 
32 
27 
21 
16 
13 
6 
4 

This table has been taken from "Software Productivity," Volume 1, Number 1 
Software Productivity Research, Inc., March/April 1986. 
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CHAPTER VIII 

Teaching Object-Oriented Ada 

In this chapter, we address the level and depth of Ada instruction 
appropriate for different personnel types involved in a DoD software 
acquisition, including project managers, system engineers, software 
engineers and programmers. The use of SHARP abstracts is described in the 
context of instructing students in developing Ada software in an object- 
oriented manner. Specifically, we address teaching project managers and 
system engineers (a) object-oriented technology, (b) basic concepts in an 
Ada implementation of an object-oriented design, and (c) the cost 
ramifications of this approach. In addition, we address teaching software 
engineers and programmers the use of Ada to implement an object-oriented 
design. In both cases, the abstracts of SHARP can be used to graphically 
illustrate the basic technology, thus establishing a solid knowledge base 
for learning Ada implementation detail. 

We suggest that it is important that appropriate Ada instruction be given 
to project managers and system engineers, as well as software engineers and 
programmers. Of course, the level and depth of this instruction should not 
be the same. However, the gap in knowledge between personnel involved in 
software acquisition must be constrained to the extent that effective 
communication can take place during system acquisition. 

We further suggest that Ada should be taught in the context of object- 
oriented design and in a top-down manner (i.e., high-level structure down 
to low-level implementation detail). This approach can be taken using the 
abstracts of SHARP, since with SHARP Ada computer programs can be repre- 
sented by graphics. The graphics can be used to provide clear mental 
pictures of complex technology. Then, once the technology has been intro- 
duced, design implementation in Ada source code can be taught. 

1.   INTRODUCTION 

1.1  BACKGROUND 

As discussed in the earlier chapters, during the development of large and 
complex computer programs, the use of an object-oriented approach is 
critical because of the need to control complex dependency relationships 
between types, variables and program units. In addition, the object- 
oriented approach is critical because of the speed of Ada compilers. With 
object-oriented Ada, requirements assigned to objects are implemented in 
loosely coupled Ada packages and tasks, which the development team can code 
and test independently. By constraining their size and stubbing program 
units interacting with them, the Ada packages and tasks can be compiled and 
recompiled in a timely manner during their development. With traditional 
methodologies and highly coupled program units, the compilation of large 
and complex Ada computer programs is a significant problem. 
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It is important that appropriate instruction in the effective use of Ada be 
given to personnel involved in the acquisition of DoD software, including 
project managers and system engineers as well as software engineers and 
programmers. Of course, the level of detail and emphasis of the instruc- 
tion provided to the different team members should have the appropriate 
depth and point of view. 

Program managers must have sufficient knowledge of an Ada effort to intel- 
lectually grasp the problem they must manage. Experience has shown that 
misunderstood projects tend to go astray. Initial budgets tend to be 
insufficient and resource allocation during the course of the software 
development effort may not be appropriate. It is important that program 
managers and administrators understand the cost/schedule ramifications of 
object-oriented Ada efforts. 

System engineers are responsible for system conception and the specifica- 
tion of system requirements. They must have sufficient knowledge of Ada 
and an object-oriented approach to software development to properly allo- 
cate system requirements to software, to establish effective hardware 
processing configurations, and to establish appropriate interfaces between 
hardware and software. 

Software engineers must have advanced knowledge of Ada and the object- 
oriented methodology. They must have the capability to distribute software 
requirements to objects and must be able to establish a detailed object- 
oriented design representation that can be easily understood by program- 
mers. They must be clearly aware of the cost/schedule ramifications of 
their designs. 

Programmers must not only have advanced knowledge of how to establish Ada 
code, but also should have adequate (if not comprehensive) knowledge of the 
object-oriented approach to the development of Ada software. They must 
correctly interpret the design representation and transform it into 
detailed Ada code. They then must rigorously test the code to assure that 
it accurately implements the design established by a software engineer. 

Software test engineers must have sufficient knowledge of the object- 
oriented approach to the development of Ada software to effectively inte- 
grate and test implemented objects, upon their release by programmers. 
They must be able to map software requirements specified in a Software 
Requirements Specification (DI-MCCR-80025) into test stimuli that exercise 
integrated object implementations. 

Thus, instruction must be provided to different personnel associated with 
an object-oriented Ada development effort. It is generally recognized that 
such instruction must cover methodology, Ada programming support environ- 
ments (APSEs) as well as language-unique considerations. However, the 
level of detail of instruction provided to different personnel types will 
vary, such as in the manner suggested in Table 10. 

1.2  CHAPTER SCOPE 

In this chapter, the use of SHARP abstracts to teach Ada software is 
described in two major sections. The discussion addresses 'design 
methodology' associated with object-oriented techniques and 'Ada language' 
usage to implement object-oriented designs, but excludes discussion of 
'APSEs.' 
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TABLE 10  LEVEL OF INSTRUCTION REQUIRED IN 
OBJECT-ORIENTED ADA BY LABOR TYPE 

LABOR TYPE 

ADA PROGRAMMING 
DESIGN SUPPORT ADA 

METHODOLOGY ENVIRONMENTS (APSEs) LANGUAGE 

M M L 
H M I. 
H H H 
H H H 

Project Managers 
System/Test Engineers 
Software Engineers 
Programmers/QA Personnel 

H - High Level of Instruction Required 
M - Medium Level of Instruction Required 
L - Low Level of Instruction Required 

In Section 2, an overview of the use of SHARP for instruction appropriate 
for project managers, system engineers and software test engineers is 
provided.  Such instruction primarily should introduce the concept of 
object-oriented software development and the economics of the methodology. 
This instruction can be accomplished independent of Ada code by using the 
graphics of SHARP. 

In Section 3, an overview of the use of SHARP for instructing software 
engineers, programmers and software quality assurance personnel is pro- 
vided. In this section, we address approaches to instruction in learning 
specific steps in an object-oriented Ada design, the representation of that 
design with SHARP abstracts, and the transformation of the design to AcLi 
code. The traditional approach to Ada instruction is discussed, whereby 
Ada is taught in a bottom-up manner (i.e., low level detail up to high 
level structure). As an alternative and possible improvement over the 
traditional approach, teaching Ada in a top-down manner is discussed (i.e., 
high level structure down to low level detail). The latter approach is 
possible with the abstracts of SHARP, since Ada computer programs can be 
completely represented by graphics in teaching technical concepts. Then, 
once the technical concepts have been introduced, their implementation in 
code can be taught. 

2. ADA INSTRUCTION FOR PROJECT MANAGEMENT AND SYSTEM ENGINEERING PERSONNEL 

This section addresses the level and depth of Ada-unique instruction appro- 
priate for project management and system engineering personnel. It is 
pointed out that such personnel should understand essential aspects of an 
object-oriented Ada computer program, but not in terms of Ada syntax and 
lexical units. Rather, it is suggested that the important concepts asso- 
ciated with object-oriented Ada efforts must be presented using a level of 
abstraction higher than Ada code --a level free of confusing detail. 
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We feel SHARP abstracts provide a mechanism for teaching Ada concepts that 
can be understood by management and system engineers, without introducing 
code detail beyond their scope of comprehension and need. 

As we have already stated, experience has proven that software projects not 
understood tend to go astray. Typically, initial budgets tend to be 
insufficient and resource allocation inappropriate. Accordingly, it is 
important that basic concepts of Ada-unique object-oriented software be 
taught to management and system engineering personnel. 

2.1 ADA INSTRUCTION APPLICABLE TO PROJECT MANAGERS 

Project managers are responsible for managing a large and complex system 
acquisition. Government managers direct the preparation of the 
System/Segment Specification (DI-CMAN-80008) and establish proper funding 
for the acquisition. They are responsible for approval of software 
requirements and design specifications, test procedures and ultimate 
acceptance of the system. 

Contractor project managers interface with government managers and direct 
the development of the system.  Contractor project managers, responsible 
for software development, plan and direct software-related work. The 
plann 

The d 

ng activity encompasses: 

Defining goals, budgets, and schedules for the acquisition 
of a Computer Software Configuration Item (CSCI) 

Identifying needed personnel, development facilities, and 
other resources 

Investigating and evaluating costs, resources, and the 
availability of these resources 

Developing plans for using available resources to satisfy 
CSCI development objectives 

Estimating costs for the resources identified by the 
plans. 

rection activity encompasses: 

Staffing the CSCI acquisition 

Supervising personnel and appraising performance 

Reviewing documentation 

Evaluating expenditures versus budgets 

Checking accomplishments versus scheduled events 

Checking progress and addressing problems encountered 

Instigating changes to goals, budgets, and schedules to 
assure that any detected budget overruns and schedule slips 
are minimized 
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• Introducing changes to goals, budgets, and schedules to 
satisfy management or the government 

• Informing responsible project directors of any slips in CSCI 
acquisition schedules and budgets that cannot be corrected. 

There are a multitude of issues that software project managers must con- 
sider, as discussed in the Program Manager's Guide to Ada. Clearly, 
project managers must understand the concept of object-oriented Ada soft- 
ware development, and the cost ramifications of this approach, to intel- 
ligently address the multitude of Ada-related issues. 

2.1.1 Instruction for Project Managers in Object-Oriented Ada-Unique 
Concepts 

Although project managers typically should not be expected to learn Ada 
lexical units and syntax, they should be very familiar with the material 
presented in Chapter I. For example, they should be aware of the basic 
building blocks of an Ada computer program -- the program units called 
subprograms, tasks and packages. They should be aware of how these program 
units are used to establish processes. As discussed in Section 3 of 
Chapter I, SHARP pictographs can be used to represent an Ada computer 
program at this high level, such as in the manner shown in Item a of Figure 
99. As this figure illustrates, the SHARP graphic illustrates concurrently 
executing process tasks that are declared in the main Ada program to 
service such things as communication links, terminals, work stations and 
interfacing microprocessors. 

The project managers should also be taught basic concepts for process 
implementation in an object-oriented manner, at the level of detail shown 
in Chapter III. As discussed in this chapter, requirements assigned to 
each process should be distributed among objects. The objects can be 
implemented using Ada packages or tasks, and should be loosely coupled. 
The SHARP abstracts shown in Items b and c of Figure 99 can be used to 
explain these concepts to project managers. 

2.1.2 Instruction for Project Managers in Ada-Unique Cost/Schedule 
Estimation 

Project managers should also be taught the cost ramifications of the 
object-oriented approach to software development versus traditional 
approaches. It is important that they understand how existing cost models 
can be used in estimating the cost of object-oriented Ada software, and 
when they must not be used. This is critical to the project managers 
establishing meaningful budgets and schedules, and projections for the time 
and cost at completion. 

2.2  ADA INSTRUCTION APPLICABLE TO SYSTEM ENGINEERS 

System engineers collect, define and evaluate system requirements, many of 
which must be implemented in software.  System engineers in the government 
interview users,  higher headquarters and other agencies authorized to 
specify system requirements.  They document the requirements in a System/- 
Segment Specification, in accordance with DI-CMAN-80008. 
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Contractor system engineers receive and interpret the System/Segment 
Specification. They prepare a Software Requirements Specification in 
accordance with DI-MCCR-80025 and an Interface Requirements Specification 
in accordance with DI-MCCR-80026.  Their definition activities encompass: 

• Drafting operational concepts and deployment plans 

• Defining operational mode requirements including rules for 
transition from one operational mode to another 

• Defining system inputs and outputs, and defining operations 
on inputs to produce outputs 

• Specifying categories of performance including precision, 
accuracy, reliability, and maximum allowable processing time 
(i.e., time to produce an output from inputs) 

• Specifying external interface requirements, including 
specific interface with other systems, information flow and 
data rates across each, and conditions affecting information 
flow 

• Specifying man-machine interfaces, including display 
legibility and man-machine dialogue 

• Defining design constraints, including required 
architectural features, memory constraints, algorithms, and 
function allocations 

• Defining the testing requirements against which detailed 
system test plans and procedures must be written 

• Defining cost and schedule constraints, including cost 
limits and delivery dates. 

The evaluation activities encompass: 

• Organizing proposed requirements (e.g., classifying 
collected requirements by source, type, and version) 

• Interpreting and restating obscure requirements as necessary 
to clarify them 

• Restating requirements in formal memoranda and working 
papers for informal validation by representatives of the 
government 

• Reviewing and revising the requirements based on feedback 
from the government. 

The approach to establishing and presenting software requirements by a 
system engineer should be undertaken with knowledge of how these require- 
ments will be implemented in an object-oriented Ada-unique manner. As is 
the case   for a project manager, system engineers must understand the 
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concept of object-oriented Ada software development, and the cost ramifica- 
tions of this approach. In addition, they must understand how to effi- 
ciently test an object-oriented Ada computer so that they can draft effec- 
tive test plans, procedures and reports. 

2.2.1 Instruction for System Engineers in Object-Oriented Ada-Unique 
Concepts 

As is the case for project managers, system engineers typically should not 
be expected to learn Ada lexical units and syntax. However, they must have 
sufficient knowledge of object-oriented Ada-unique concepts to properly 
specify requirements in a manner that easily leads to distribution of 
requirements among processes and objects, and the development of procedures 
needed to test the implementation of the requirements. 

Accordingly, like the project manager, they must be taught the basics of 
Ada presented in Chapter I and the fundamentals of an object-oriented 
design demonstrated in Chapter III. 

2.2.2 Instruction for System Engineers in Testing Object-Oriented Ada 
Software 

In addition, system engineers responsible for software testing must be 
taught how to test an object-oriented Ada computer program. DOD-STD-2167 
and its companion test-unique data item descriptions (DIDs) specify govern- 
ment requirements for testing deliverable software. Testing of object- 
oriented Ada software can be envisioned as a mapping of software require- 
ments into test stimuli for a set of test cases. Special purpose test- 
unique Ada packages are needed to produce the test stimuli and record 
parameters passed between objects. The recorded data is compared to 
expected values, either directly or after data reduction calculations. 

System engineers should be familiar with issues associated with the test of 
object-oriented Ada software, such as the material presented in Chapter VI. 
They must be taught how to nominally test object-oriented software, where 
stimuli and operating conditions are typical of those to be experienced by 
the software in an operational "real world" environment. They must be 
taught how to stress test object-oriented software, where stimuli and 
operating conditions are extreme, unusual or even erroneous. They must be 
taught how to test the performance of object-oriented software over long 
time periods, to see if it fails with time and to identify patterns and 
biases in results that may set in with time. 

As discussed in Chapter VI, SHARP abstracts can be used to explicitly 
represent test configurations. For example, the SHARP Invocation Diagram 
shown in Figure 100 represents object implementations encapsulated within 
Ada packages and special test software, which is represented with shaded 
pictographs. The test software provides environmental stimuli and records 
parameters passed between object implementations. 
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2.2.3  Instruction for System Engineers in Ada-Unique Cost/Schedule 
Estimation 

As is the case for project managers, system engineers should be fully aware 
of the cost ramifications of object-oriented software, as discussed in 
Chapter VII. They also must be aware of the cost ramifications of the 
tests they specify, and the dangers if the tests are not adequate. 

3.   ADA INSTRUCTION FOR SOFTWARE ENGINEERS AND PROGRAMMERS 

Software engineers are responsible for developing an object-oriented 
Ada-unique design that can be used to map system requirements assigned to 
software to implementing code. The design is presented in the following 
documents: 

• Software Top-Level Design Document (DI-MCCR-80012) 

• Software Detailed Design Document (DI-MCCR-80031) 

• Interface Design Document (DI-MCCR-80027) 

• Data Base Design Document (DI-MCCR-80028) 

Programmers are responsible for mapping the design of an object 
implementation into Ada source code and rigorously testing the code. 

This section addresses the level and depth of Ada instruction appropriate 
for software engineers and programmers. It is pointed out that such 
personnel should understand design issues and the associated cost ramifi- 
cations, as well as the details of coding with the Ada language. With 
SHARP, Ada code can be taught in the context of the overall design 
structure. The graphical aids supplied by SHARP provide mental pictures to 
a student for complex technical concepts. Having a full knowledge of these 
concepts is a prerequisite to learning the effective use of Ada 

3.1  TEACHING ADA IN A BOTTOM-UP MANNER 

Often textbooks and seminars on Ada present the Ada language in a bottom-up 
manner. With this approach, the "nut and bolts" of code are initially 
described -- the lexical units and syntax of Ada. Then, for example, 
typing, statements and Ada blocks might be presented. These aspects of Ada 
then might be used to describe Ada program units and data structures. 
Finally, such things as exception handling, generics, I/O and low level 
programming are presented. 

Thus, if an instructor presents a course on Ada using the sequence of 
instruction presented in such textbooks, Ada is used to teach Ada in a 
bottom up manner. Code is taught in terms of code. When the bottom up 
approach to teaching Ada is used, we believe the SHARP graphics would help 
to introduce the technology associated with the use of Ada. For example, 
we believe the SHARP graphics will be useful in teaching the implementation 
of data structures with Ada -- especially the visibility of data. 
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Figure 101 illustrates the visibility of constants and variables found in 
packages. Variables and constants declared in the specification of a 
package can be completely visible, private or limited private. As shown in 
Item a of Figure 101, the geometric figures used to represent types, 
variables and constants in a SHARP Data Structure Diagram are unshaded when 
visible and partially shaded when private. In Ada, when a parameter is 
private, a user is excluded from applying operations on the parameters 
other than those operations defined within the package specification. The 
only exception to this rule is assignments and tests for equality and 
inequality, which can be made. 

As shown in Item b of Figure 101, the geometric figures used to represent 
types, variables and constants in a SHARP Data Structure Diagram are shaded 
when not visible, having been declared in the body of a package. 

The use of such SHARP graphics will provide a pictorial image in the mind 
of the student for the data structure implemented with an Ada package. The 
mental image of such a data structure should be easier to learn and 
remember than the image supplied by code, especially since the student will 
not have initially mastered the varied and subtle rules of Ada (e.g., 
syntax and lexical units applicable to type declarations, constant declara- 
tions and variable declarations). 

We feel that SHARP graphics will be a very effective aid when teaching Ada 
in a bottom-up manner. The mental images supplied by the graphics will 
help the student understand the code being taught. 

3.2  TEACHING ADA IN A TOP-DOWN MANNER 

Teaching Ada in a bottom-up manner is a "bootstrap" operation. Ada code is 
used to teach other code. We feel there are shortcomings associated with 
teaching Ada in this manner. For example, if the student has not mastered 
one aspect of the code (which can happen on a short "shotgun" course in 
Ada), the lessons dependent upon that unlearned code may also go unlearned. 
Also, the student is learning Ada independent of the context of a design 
methodology and its cost ramifications. For example, data structure 
visibility may be taught independent of adequate understanding of 
information hiding in object implementations, an important principle in the 
development of software in an object-oriented manner. 

We feel that large and complex Ada software should be built in an object- 
oriented manner. As discussed in Section 1.2, this approach is needed in 
order to control complex dependency relationships between variables, types 
and program units. In addition, the use of this approach can reduce 
problems introduced by the fact that Ada compilers are slow relative to 
compilers for most other high order languages, due in part because they 
make extensive checks of the complex dependencies. Using the object- 
oriented approach, a large and complex Ada computer program is constructed 
using a set of loosely coupled objects. The implementation of each object, 
can be thought of as separate small software acquisition. Being small 
relative to the overall software product, the object implementation can be 
compiled and recompiled in a timely manner. 
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However, it is not possible to teach Ada in a top-down manner without an 
easily understood notation for Ada other than Ada source code itself. SHARP 
provides such a notation. The remainder of this section describes the 
scope of a set of lessons that could be used to teach Ada in a top-down 
manner in the context of an object-oriented design using the graphical 
notation of SHARP. 

3.2.1 Lesson 1 - Process Abstraction 

The first lesson describes the basic building blocks of an Ada computer 
program -- the program units called subprograms, tasks and packages. It 
introduces the basic pictographs of SHARP used to represent the program 
units. 

Then, the student is taught how the designer of a large and complex 
computer program typically, as an initial step in the design process, 
identifies processes needed to establish concurrent processing threads. 
The implementation of the processes with Ada tasks is taught using the 
SHARP pictographs, such as those shown in Figure 98. 

After having been taught basic technology of process abstraction using 
SHARP, the student is then ready to learn the Ada source code associated 
with this technology. To complete the lesson, the student is taught this 
code. For example, the basic code in Figure 102 could be used to complete 
this lesson. 

3.2.2 Lesson 2 - Process Interaction 

The second lesson introduces the task rendezvous, the Ada mechanism for 
intertask communication and, therefore, communication between processes. 
Task rendezvous is consummated by the callee (or acceptor task) after being 
initiated by a caller task. Parameters are passed between the caller and 
callee during the rendezvous, as represented by SHARP in the manner shown 
in Figure 103. As the figure shows, the parameters are passed from the 
caller to the acceptor via the in, out, or in out modes. Entry points in 
an acceptor task are shown as small parallelograms in the acceptor. Arrows 
are used to represent each of the three entry modes. Circles on these 
arrows represent the parameters being transferred. 

After having been taught the basic technology of process interaction via 
task rendezvous using SHARP, the student is then ready to learn the Ada 
source code associated with this technology.  To complete the lesson, the 
student is taught this code.  For example, the basic code in Figure 104 
could be used to commence this discussion.  Then more advanced code can be 
presented to explain code-related technical details associated with the 
implementation of process interaction. 
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with TEXT_IO; 
use TEXT_IO; 
procedure MAIN is 

task COMM; 
task body COMM is separate; 

task TERMINAL; 
task body TERMINAL is separate; 

task WS_A; 
task body WS_A is separate; 

task WS_B; 
task body WS_B is separate; 

end MAIN; 

FIGURE 102.    BASIC ADA CODE USED TO ESTABLISH PROCESSES 

3.2.3  Lesson 3 - Object Implementation within Processes 

The third lesson introduces the important concept of information hiding, 
which is fundamental to the implementation of object-oriented designs. 

The lesson commences with a discussion of the basic concepts for the 
establishment of an object-oriented design (e.g., those described in 
Section 2.2 of Chapter II).  The student must be presented the technical 
reasons for the object-oriented approach to software development (i.e., the 
control of complex dependencies between variables, types and program units) 
and the cost ramifications of this approach (i.e., significant cost 
reduction as compared to traditional approaches for large and complex 
computer programs).  Presumably these facts have already been taught to the 
students in a preceding course, but should be reviewed as part of Lesson 3. 

Next, the student must be taught how information hiding capabilities of Ada 
packages and tasks are used to encapsulate program units introduced to 
implement requirements assigned to each object. 

The basic pictographs of SHARP can be used to help teach the technical 
concepts for object implementation, using information hiding capabilities 
inherent in Ada packages and tasks.  For example, Figure 105 shows an Ada 
package, which contains a visible program unit introduced to facilitate 
communication with another object implementation, and which contains a 
local data structure not accessible to other objects.  A visible data 
structure is also provided to account for the declaration of parameters 
passed to and received from other objects.  The processing unique to this 
object implementation is hidden in the bodies of the communicating program 
units.  Lessons for the implementation of the internal complexities of an 
object are described in Sections 3.2.7, 3.2.8 and 3.2.9. 
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FIGURE 103   SHARP REPRESENTATION OF PROCESS INTERACTION 
(TASK RENDEZVOUS) 
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with TEXT_IO; 
use TEXT_IO; 
procedure MAIN is 

task COMM; 
task body COMM is separate; 
task TERMINAL; 
task body TERMINAL is separate; 
task WS_A; 
task body WS_A is separate; 
task WS_B is 

entry ENTRY_B (PAR 1: in INTEGER; 
PAR 2: in out INTEGER); 

end WS_B; 
task body WS_B is separate; 

end MAIN; 

--ESTABLISH 1ST PROCESS WITH TASK COMM 

separate (MAIN) 
task body COMM is 

begin 

end COMM; 

•ESTABLISH 2ND PROCESS WITH TASK TERMINAL 

separate (MAIN) 
task body TERMINAL is 

begin 

end TERMINAL; 

FIGURE 104.    BASIC ADA CODE USED TO PASS PARAMETERS BETWEEN PROCESSES 
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-ESTABLISH 3RD PROCESS WITH TASK WS A 

separate (MAIN) 

task body WS_A  --   caller  task 

begin 

WS_B. ENTRY_B (PAR1, PAR2); 

end WS A; 

-ESTABLISH 4TH PROCESS WITH TASK WS B 

separate (MAIN) 

task body WS_B is -- Acceptor Task 

begin 

accept ENTRY_B (PAR1: in INTEGER; PAR2: in out INTEGER) do 

end ENTRY_B; 

end WS B; 

FIGURE 104. (CONCLUDED) 
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After having been taught the basic technology for object implementation 
using SHARP, the student is then ready to learn the Ada source code asso- 
ciated with this technology.  To complete Lesson 3, the student is taught 
the code used for object implementation. 

For example, the basic code shown in Figure 106 (which is associated with 
Figures 98 and 99) could be used to commence this discussion and then more 
advanced code can be presented to explain code-related technical details 
associated with object implementation. 

--MAIN PROGRAM 

with TEXT_I0; 
use TEXT_I0; 
procedure MAIN is 

task COMM; 
task body COMM is separate; 
task TERMINAL; 
task body TERMINAL is separate; 
task WS_A; 
task body WSA is separate; 
task WS_B is 

entry ENTRY_B (PAR 1: in INTEGER; 
PAR 2; in out INTEGER); 

end WS_B; 
task body WS_B is separate; 

end MAIN; 

--ESTABLISH 1ST PROCESS WITH TASK COMM 

separate (MAIN) 
task body COMM is 

package AB0RT_HANDLER_P2 is  OBJECT P2 
procedure ABORTJTRANS (   ...   ); 

end AB0RT_HANDLER_P2 is 
package body AB0RT_HANDLER_P2 is 

procedure ABORT_TRANS (   ...   ) is separate; 
end ABORT HANDLER P2; 

package REC0VERY_HANDLER_P3 is 
procedure START_BEG ( 
procedure START_BKPT ( 

•OBJECT P3 
); 
); 

end REC0VERY_HANDLER_P3; 
package body REC0VERY_HANDLER_P3 is 

procedure START_BEG (   ...   ) is separate; 
procedure START_BKPT (   ...   ) is separate; 

end RECOVERY HANDLER P3; 

FIGURE 106. BASIC ADA CODE FOR OBJECT IMPLEMENTATION: 
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with AB0RT_HANDLER_P2 OBJECT PI 
use AB0RT_HANDLER_P2; 
with REC0VERY_HANDLER_P3; 
use REC0VERY_HANDLER_P3; 
package TRANS_HANDLER_P1 is 

procedure NOTIFY_OPERATOR (   ...   ); 

end TRANS_HANDLER-P1; 
package body TRANS_HANDLER_P1 is 

procedure NOTIFY_OPERATOR (   ...   ) is separate; 

end TRANS_HANDLER_P1; 

--OBJECT P2 IMPLEMENTATION WITHIN PROCESS TASK COMM 

separate (MAIN.COMM. AB0RT_HANDLER_P2) 
procedure ABORT_TRANS (      ...      ) is 

begin 

end ABORT_TRANS; 

--OBJECT P3 IMPLEMENTATION WITHIN PROCESS TASK COMM 

separate (MAIN.COMM. RECOVERY_HANDLER_P3) 
procedure START_BEG (     ...    ) is 

begin 

end START_BEG; 
procedure START_BKPT (  ...  ) is 

begin 

end START_BKPT; 

--OBJECT PI IMPLEMENTATION WITHIN PROCESS TASK COMM 

separate (MAIN.COMM. TRANS_HANDLER_P1) 
procedure NOTIFY OPERATOR (      ...     ) is 

begin 

if TRANS_ID = ABORT then 
ABORT_TRANS (     ...     ) 

elsif TRANS_ID - RESTART then 
START_BEG (    ...    ); 

else 
START_BKPT (     ...     ); 

end if; 

end NOTIFYJDPERATOR; 
begin 

end COMM: 

FIGURE 106. (CONCLUDED) 
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3.2.4 Lesson 4 - Object Data Structure 

An object implementation has a local data structure shared by the program 
units used to implement the object. The local data structure is not 
accessible by other object implementations. A small visible data structure 
is also provided for defined types and variables established to facilitate 
parameter passing to other object implementations. 

The student must be taught the contents of the data structure. SHARP Data 
Structure Diagrams can be used to help teach the technology for establish- 
ing data structures for an object implementation. As shown, declaration of 
defined types, constants and variables are represented by narrow geometric 
entities, either upright or slanting to the to the right or left. As 
illustrated in Figure 107, the visibility of the data structure entities 
are driven by where they are declared. Shaded data structure entities have 
been declared within the body of the package and, therefore, are not 
accessible by program units external to the package. Unshaded or partially 
shaded entities have been declared within the specification of the package 
and, therefore, are accessible to external program units. Entities that 
are partially shaded have been designated as private or limited private. 

When the value of a private parameter is passed from one object implementa- 
tion to another, the receiver object implementation can only use the para- 
meter in assignment statements, statements testing for equality and opera- 
tions defined within the package specification. If the passed parameter is 
limited private, assignment statements and statements testing for equalitv 
are no longer automatically available to the user. 

Parameters passed between objects may be declared to be private or limited 
private in the specification of the package encapsulating the object 
implementation, especially if they are used in the formulation within the 
implementation. 

The local data structure is established in the body of the encapsulating 
package. Therefore, entities of this data structure are not accessible by 
other object implementations. As illustrated in Figure 107, all the 
entities in this data structure are shaded, signifying the lack of accessi- 
bility outside the package. 

As described in Section 2.4.4 of Chapter II, the object's local data 
structure may contain an array or record, and may contain discriminated, 
access or task types. In Ada, an array is defined to be a collection of 
entities of the same type. A defined type for an array is signified by the 
letters 'AR'. A record is defined to be a collection of entities of 
possibly two or more types, where the entities are determinable at compile 
time (as opposed to an array entity which can be established dynamically 
during run time). A defined type for a record is signified by the letter 
'R' . 

As an alternative to statically allocated data, Ada provides a mechanism 
for allocating variables dynamically during program execution. Since the 
storage locations used for dynamic variables are not determined in advance, 
they cannot be referenced by a name but must instead be referenced 
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indirectly via a so-called access type. Unknown amounts of data can be 
handled by dynamically allocating a storage to each new datum when it is 
received. In this way, complex data structures can be built with 
components dynamically allocated. An access type is represented by an 
upright narrow rectangle with the letters "AC" underneath it. 

A task type is formed when the keyword task is followed by the keyword 
type. Elaboration of the corresponding task body defines what a task of 
that type does. It does not cause a task to be activated. Rather, tasks 
are activated separately by declaring variables of the task type. A task 
type is represented by an upright narrow rectangle with the letter "T" 
underneath it. 

In general, the type of a variable or constant can be represented in SHARP 
Data Structure Diagrams as follows: 

o   If the type is predefined, then the first letter of the type 
(e.g., I for INTEGER) is placed under the geometric 
representation of the variable or constant. 

o   If the type is defined, the letter "T" followed by the type 
glossary number is placed under the geometric representation 
of the variable or constant. 

Having been taught the basic technology for object data structures with the 
aid of SHARP Data Structure Diagrams the student is then ready to learn the 
Ada source code associated with this technology. To complete Lesson 4, the 
student is taught the code used to establish a data structure. For example, 
the basic code shown in Figure 108 (which corresponds to Figure 107) could 
be used to commence this discussion. Then more advanced code can be 
presented to explain code-related technical details associated with data 
structure implementation. 

3.2.5  Lesson 5 - Interaction of Object Implementations 

Parameters can be passed from one object to another. If object implementa- 
tions are encapsulated in Ada tasks, the task rendezvous is used to accom- 
plish the object interaction. The teaching of task rendezvous was 
discussed in Lesson 2 (Section 3.2.2), in the context of process inter- 
action. Object implementations hidden in Ada packages interact using 
communicating subprograms declared in the packages specification. Item b 
of Figure 99 uses a SHARP Invocation Diagram to illustrate communication 
between object implementations, for the set of object implementations shown 
in Item a of Figure 99. 

The specific parameters passed between object implementations can be 
represented by SHARP Data Flow Diagrams, as shown in Figure 109. As shown, 
three modes of parameter passing are possible, as is the case with task 
rendezvous.  Specifically, the modes are as follows: 
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--MAIN PROGRAM 

with TEXT_10; 
use TEXT_IO; 
procedure MAIN is 

task COMM; 
task body COMM is separate; 
task TERMINAL?: 
task body TERMINAL is separate; 
task WS_A; 
task body WS_A is separate; 
task WS_B is 

entry ENTRY_B (PAR1: in INTEGER; 
PAR2: in out INTEGER); 

end WS_B; 

task body WS_B is separate; 

end MAIN; 

--ESTABLISH 1ST PROCESS WITH TASK COMM 

separate (MAIN) 
task body COMM is 

package AB0RT_HANDLER_P2 is  OBJECT P2 

--VISIBLE DATA STRUCTURE 
type TRANSACTI0NJT1 is private; 
type STATUS_T2 is private; 
TRANS_ID:  TRANSACTI0N_T1; 
STATUS:  STATUS_T2; 
private 

type  TRANSACTION_TI   is   (RESTART,   BREAKPOINT,   ABORT); 
type  STATUS_T2   is   (RESTART_COMPLETE,   NO_RESTART, 

BREAKPOINT_COMPLETE,   NO_BREAKPOINT,   ABORT_COMPLETE, 
NO_ABORT); 

procedure ABORT_TRANS   (        ...        ); 

end ABORT HANDLER  P2; 

FIGURE 108.    BASIC ADA CODE FOR THE DATA STRUCTURE 
OF AN OBJECT IMPLEMENTATION 
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package body AB0RT_HANDLER_P2 is 

--LOCAL DATA STRUCTURE 
--types 
type CONSTANT_Tl is INTEGER range 1 ... 100; 
type PRESSURE_T2 is INTEGER range 22 ... 35; 
type TEMPJT3 is INTEGER range 1 ... 120; 
type STATE_T4 is (ON, OFF, PENDING); 
-- constants 
MAX: CONSTANTJTl:- 90 
MIN: C0NSTANT_T1:« 70 
NORMAL: CONSTANT:- 80 
--variables 
LOWER_PRESSURE: PRESSURE_T2; 
UPPER_PRESSURE: PRESSURE_T2; 
UPPERJTEMP: TEMP_T3; 
LOWER_TEMP: TEMP_T3; 
LOWER_STATE: STATE_T4; 
UPPER_STATE: STATE_T4; 

procedure ABORT_TRANS (   ...   ) is separate; 
end ABORT_HANDLER_P2; 

o 
o 
o 

FIGURE 108. (CONCLUDED) 
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o   'in' (i.e., the value of a parameter is received and not 
modified) 

o   'out' (i.e., the value of a parameter is created and 
exported) 

o    'in out' (i.e., the value of a parameter is received, 
modified and exported). 

Having been taught the basic technology for object interaction using SHARP 
Invocation Diagrams and Data Flow Diagrams, the student is then ready to 
learn the Ada source code associated with this technology. To complete 
Lesson 5, the student is taught the code used for the interaction of object 
implementations. For example, the basic code shown in Figure 110 (which 
corresponds to Figure 109) could be used to commence this discussion. Then 
more advanced code can be presented to explain code-related technical 
details associated with data passage between subprograms. In this example, 
values for the variable TRANS_ID are passed between the calling subprogram 
and the called subprograms using the 'in out' mode. Also, values for the 
variable STATUS are sent from the called subprogram to the caller using the 
'out' mode. 

•MAIN FROGRAM 

with TEXT_I0; 
use TEXT_I0; 
procedure MAIN is 

task COMM; 
task body COMM is separate; 
task TERMINAL is separate; 
task body TERMINAL is separate; 
task WS_A; 
task body WS_A is separate; 
task WS_B; 
task body WS_B is separate; 

entry ENTRY_B (PAR1: in INTEGER; 
PAR2: in out INTEGER); 

end WS_B; 

task body WS_B is separate; 

end MAIN; 

FIGURE 110.    BASIC ADA CODE FOR PARAMETER PASSING 
BETWEEN SUBPROGRAMS 
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ESTABLISH 1ST PROCESS WITH TASK COMM 

separate (MAIN) 
task body COMM is 

package AB0RT_HANDLER_P2 is  OBJECT P2 IMPLEMENTATION 

--VISIBLE DATA STRUCTURE 
type TRANSACTION_Tl is private; 
TRANS_ID:  TRANSACTIONJT1; 
STATUS:  STATUS_T2; 
private 

type TRANSACTION_Tl is (RESTART, BREAKPOINT, ABORT); 
type STATUSJT2 is (RESTART_COMPLETE, NO_RESTART, 

BREAKPOINT_COMPLETE, NO_BREAKPOINT, ABORT_COMPLETE, 
NO_ABORT); 

procedure ABORT_TRANS (TRANS_ID: in out TRANSACTION_T1; 
STATUS: out STATUS T2); 

end ABORT HANDLER P2; 

package body ABORT_HANDLER_P2 is 

--LOCAL DATA STRUCTURE 
type C0NSTANT_T1 is INTEGER range 1 ... 100; 
type PRESSURE_T2 is INTEGER range 22 ... 35; 
type TEMP_T3 is INTEGER range 1 ... 120; 
type STATE_T4 is (ON, OFF, PENDING); 
- - constant 
MAX: CONSTANTJT1:- 90 
MIN: CONSTANTJTl:- 70 
NORMAL: CONSTANT:= 80 
--variables 
LOWER_PRESSURE: PRESSURE_T2; 
UPPER_PRESSURE: PRESSURE_T2; 
UPPER_TEMP: TEMP_T3; 
LOWER_TEMP: TEMP_T3; 
LOWER_STATE: STATEJT4; 
UPPER_STATE: STATE_T4; 

procedure ABORTJCRANS (TRANS_ID: in out TRANSACTIONJTl; 
STATUS: out STATUS_T2) is separate: 

end ABORT HANDLER P2; 

FIGURE 110.  (CONTINUED) 

264 



package REC0VERY_HANDLER_P3 is  OBJECT P3 IMPLEMENTATION 
procedure START BKC (TRANS ID: In out TRANSACTION T1; 

STATUS: out STATUS_T2) is separau ; 
procedure START_BKPT (TRANS_ID: in out TRANSACTION_T1; 

STATUS: out STATUS_T2) is separate; 

end REC0VERY_HANDLER_P3; 
package body REC0VERY_HANDLER_P3 is 

pi ,,,'c.im O rsTAPT iM.r.- (TRANS in in ,,,,i TRANSACTION TI . 
STATUS: out STATUS_T2) is Sfepmnie, 

end REC0VERY_HANDLER_P3; 

with AB0RT_HANDLER_P2; 
use AB0RT_HANDLER_P2; 
with REC0VERY_HANDLER_P3; 
use REC0VERY_HANDLER_P3; 

package TRANS_HANDLER_P1 is OBJECT PI IMPLEMENTATION 

procedure NOTIFY_OPERATOR (STATUS: in STATUS_T2; 
TRANS_ID: in out TRANSACTIONJTl) 
is separate; 

end TRANS_HANDLER_P1; 
package body TRANS_HANDLER_P1 is 

procedure NOTIFY OPERATOR (STATUS: in STATUS T2; 

ff/.r/s n>. (i  n r.:r:-,vn  .; n . 
is separate; 

end TRANS HANDLER T>1; 

o 
o 
o 

separate (MAIN.COMM) 
procedure NOTIFYJDPERATOR is 

begin 

ABORTJTRANS   (TRANS_ID->TRANSA,   STATUS~>STATUSA); 

START_BEG   (TRANS_ID->TRANSB,   STATUS->STATUSA); 

START_BKPT(TRANS _ID->TRANSC,   STATUS-^STATUSC); 

end NOTIFY_OPERATOR; 

FIGURE 110.    (CONCLUDED) 



3.2.6  Lesson 6 - Abstraction Internal to an Object Implementation 

An object's requirements are typically sufficiently complex that abstrac- 
tion must be introduced into the design of the object implementation, prior 
to code implementation. For example, a small and easily comprehended 
portion of the requirements can be assigned to one level for 
implementation, while the rest of the requirements will be assigned to 
other levels. At each of the other levels, the abstraction process can be 
repeated. 

With Ada, the implementation of detail excluded at one level is passed to 
the bodies of called subprograms. The bodies of the called program units 
are implemented in the same manner. Therefore, these bodies are also 
constrained to an easily understood amount of detail, with yet lower detail 
moved again to other called program units. In this way, a series of nested 
program units are used to spread implementation detail into levels of 
abstraction. 

This abstraction process can be clearly represented by SHARP Hierarchy 
Diagrams and SHARP Invocation diagrams. For example, the Hierarchy diagram 
shown in Figure 111 represents nested program units assigned to levels. 
The subject program unit (i.e., a subprogram visible in an Ada package used 
to encapsulate an object implementation) is assigned to Level 1. Program 
units directly nested within the subject program unit are assigned to Level 
2. In general, a program unit directly nested within a program unit at 
Level n is assigned to Level n+1. 

The related Invocation Diagram is shown in Figure 112. It provides 
information relevant to the sequence in which program units will execute. 
For example, a call to a subprogram may be dependent upon certain 
conditions having been met. As shown in Figure 112, the existence of 
conditional calls is indicated by a tilde on the arrow representing the 
potential program unit call. 

Having been taught the basic technology for the internal abstraction of an 
object implementation using SHARP Hierarchy and Invocation Diagrams, the 
student is then ready to learn the Ada source code associated with this. 
technology. To complete Lesson 6, the student is taught this code. For 
example, the basic code shown in Figure 113 (which corresponds to Figures 
111 and 112) could be used to commence this discussion. Then more advanced 
code can be presented to explain code-related technical details associated 
with abstraction internal to an object. 
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o 
o 
o 

OBJECT P2 IMPLEMENTATION 

separate (MAIN.COMM.ABORT_HANDLER) 
procedure ABORT_TRANS (TRANS_ID: in out TRANSACTION_T1; 

STATUS: out STATUS_T2) is 
procedure PU_B2a is separate; 
task PU_B2b is 

entry C; 
entry D; 

end task PU_B2b; 
task body PU_B2b is separate 

begin 

end ABORT TRANS; 

--OBJECT P2, Level 2, Unit a 

separate (MAIN.COMM.ABORT_HANDLER.ABORTJTRANS) 
procedure PU_B2 is 

procedure PU_B3a is separate; 

begin -- PU_B2a 

end PU B2a; 

-OBJECT P2, Level 2, Unit b 

separate (MAIN.COMM.ABORT_HANDLER.ABORTJTRANS) 
task body PU_B2b is 

procedure PU_B3b is separate; 
procedure PU_B3c is separate; 

begin -- PU_B2b 

end PU B2b; 

FIGURE 113.    BASIC ADA CODE FOR ABSTRACTION WITH PROGRAM 
UNITS INTERNAL TO AN OBJECT IMPLEMENTATION 
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--OBJECT P2, Level 3, Unit a 

separate (MAIN.COMM.ABORT_HANDLER.ABORT_TRANS.PU_B2a) 
procedure PU_B3a is 

procedure PU_B4a is separate; 

begin -- PU_B3a 

end PU_B3a; 

--OBJECT P2, Level 3, Unit b 

separate (MAIN.COMM.ABORT_HANDLER 2.ABORT_TRANS.PU_B2b) 
procedure PU_B3b is 

procedure PU_B4b is separate; 

begin -- PU_B3b 

end PU_B3b; 

--OBJECT P2, Level 3, Unit c 

with P9; 
use P9; 
separate (MAIN.COMM.ABORT_HANDLER.ABORT_TRANS.PU_B2b) 
procedure PU_B3c is 

procedure PU_B4c is separate; 

begin -- PU_B3c 

end PU_B3c; 

--OBJECT P2, Level 4, Unit a 

separate (MAIN.COMM.ABORT_HANDLER 2.ABORT_TRANS.PU_B3a) 
procedure PU)_B4a is 

begin -- PU_B4a 

end PU B4a; 

FIGURE 113. (CONTINUED) 
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-OBJECT P2, Level 4, Unit b 

separate (MAIN.COMM.ABORT_HANDLER.ABORT_TRANS.PU_B3b) 
procedure PU_B4b is 

begin -- PU_B4b 

end PU_B4b; 

--OBJECT P2, Level 4, Unit c 

with P10; 
use P10; 
separate (MAIN.COMM.ABORT_HANDLER.ABORT_TRANS.PU_B3c) 
procedure PU_B4c is 

begin -- PU_B4c 

end PU B4c; 

FIGURE 113. (CONCLUDED) 
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3.2.7  Lesson 7 - Implementing Processing Internal to Program Units 

To establish the design for requirements abstracted to levels of program 
units, SHARP utilizes annotated pseudo code to represent the bodies of the 
program units. SHARP criteria include general standards for the pseudo 
code and its annotation. The standards require the pseudo code to account 
for the following: 

• Logic and decisions 
• Algorithms 
• Program unit calls and I/O 
• Generic instantiation 
• Exception handling 

The standards require that these entities must be presented using certain 
Ada key words and annotation, as described in Section 2.5 of Chapter II. 
The annotated pseudo code can be used to help teach Ada detail, as we reach 
the bottom of the top-down description of Ada. 

For example, consider Ada statements used for logic and decisions. The Ada 
if and case statements are used to provide conditional control (i.e., the 
selection of one of a number of alternate actions). 

The if statement selects a course of action depending upon the truth value 
of one or more conditions. In Ada, there are three basic forms of the if 
statement: 

• if-then 
• if-then-else 
• if-then-elsif 

In each case , the If statement is terminated with an end if clause. SHARP 
can be used to help teach the if statements, using annotated pseudo code 
(e.g., as shown) in item a of Figure 114. 

The case statement provides for the selection one of a set of multiple 
alternative actions, as a function of the value of an expression. SHARP 
can be used to help teach the case statement using annotated pseudo code 
(e.g., as shown in item b of Figure 114). 

Repetitive execution of action is accomplished in Ada using the loop 
statement. The basic loop is accomplished using a loop and end loop 
statement. To leave a loop, an exit statement is used. SHARP can be used 
to represent the loop statement with annotated pseudo code (e.g., as 
illustrated in item c of Figure 114). 

To repeat a loop for a specific number of times, the basic loop can be 
preceded by a for iteration clause. Also, another form of iteration can be 
accomplished with the while statement, whereby a sequence of statements is 
repeated as long as some condition is true. SHARP can be used to help 
teach the for and while statements with annotated pseudo code (e.g., as 
shown in item d of Figure 114). 
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Begin Procedure SAMPLE 2A 

if Y>0 then 

end if 

if X>0 then 

else 

end if 

if A-B then 

elsif A-C then 

else 

end if 

End Procedure  SAMPLE A 

(a) USE OF "IF" STATEMENTS 

FIGURE 114. ANNOTATED PSEUDO CODE FOR REPRESENTING LOGIC AND 
DECISIONSWITHIN THE BODIESOF PROGRAM UNITS 
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Begin Procedure SAMPLE_2B_ 

case TEST  is 

when PASS Call Procedure CONTINUE 

when FAIL Call Procedure RESTART 

end case ZL 
End Procedure SAMPLE 2B 

(b) USE OF "CASE" STATEMENT 

Begin Procedure SAMPLE_2C_ 

loop 

end loop_ 

loop 

loop 

end loop 

end loop 

End Procedure SAMPLE 2c 

(c) USE OF "LOOP" STATEMENT 

FIGURE 114. (CONTINUED) 
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Begin Procedure SAMPLE _2D 

for 1-1,2, ..  N 

end loop 

while B>0 loop 

.1 i 

1 

mi i <II •[• 

End Procedure SAMPLE 2D 

(d) USE OF THE "FOR" AND "WHILE" STATEMENTS 

Begin Procedure SAMPLE_5_ 

Call Procedure SENSOR 
--it returns the parameter SENSOR_VALUK 

raise exception 

if SENSOR_VALUE>20 millivolts 
if SENSOR VALUE<10 millivolts 

exception handler 

when SENSOR_VALUE<10 
Call Procedure SOUND_ALARM 

when SENSOR_VALUE>10 
Call Procedure RESTART 

end 

End Procedure SAMPLE 5 

(e)     REPRESENTING EXCEPTIONS 
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As another example, consider exception handling with Ada. Ada provides an 
explicit mechanism for detecting and responding to an anomaly. The 
anomaly, for example, could be associated with erroneous input data or 
overflow conditions. SHARP criteria require that the design of a program 
unit's body must specify the detection of the anomaly and the course of 
action taken after the occurrence of the anomaly. 

In Ada, the detection of the anomaly causes normal program execution to be 
suspended and control transferred to an exception handler. Once the 
exception handler has completed its processing, control transfers to code 
following the exception handler code. 

Figure 114 provides an example of annotated SHARP pseudo code used to 
specify the detection of an anomaly and action taken in an exception 
handler. SHARP criteria requires that (a) the pseudo code for the anomaly 
detection must be introduced by the key words 'raise exception' and must be 
bracketed as shown in the figure, (b) the pseudo code for the action taken 
upon occurrence of the anomaly must be introduced by the key words 
'exception handler,' must be concluded with the key word 'end,' and must be 
bracketed as shown in the figure, and (c) an arrow must point from the 
bracket enclosing pseudo code for the anomaly detection to the bracket 
enclosing pseudo code for the exception handler. 

Having been taught the basic technology for entities implemented in the 
body of a program unit through the use of annotated SHARP pseudo code, the 
student is then ready to learn the Ada source code associated with this 
technology. To complete Lesson 7 , the student is taught this code. For 
example, the code shown in Figure 116, which implements the SHARP pseudo 
code shown in Figure 115, can be used as the basis for this lesson. 
Additional code can be presented when needed to explain details associated 
with entities implemented in the bodies of program units. 

3.2.8  Lesson 8 - Use of Existing Ada Packages and Packages of Common 
Program Units 

The basic SHARP pictograph for a package can be used to represent existing 
Ada packages and Ada packages established to encapsulate common program 
units (i.e., program units accessed by two or more other program units). 
For example, in Ada, the predefined package TEXT_IO is used to facilitate 
input and output. ("The use of TEXT_IO is explained in Chapter 15 of An 
Introduction to Ada. ~) 

Also, it is expected that software contractors will utilize existing 
in-house packages in the implementation of large and complex Ada computer 
programs. It is anticipated that in time contractors will build a library 
of packages containing such things as hardware drivers, communication 
protocols, low level I/O, mathematical functions and special purpose 
application routines (e.g., Fast Fourier Transform). 

In addition, packages will be developed to house program units common 
within an object implementation, or in certain cases, common to more than 
one object implementation. 
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With SHARP, such packages are represented in the manner shown in Figure 
117. These diagrams identify visible program units declared in a package's 
specification but the diagrams do not identify program units declared in 
the package's body. Rather, SHARP uses its hierarchy and invocation 
diagram to identify these program units, as described in Section 3.2.6 in 
the context of abstraction internal to an object implementation. 

As shown in Figure 117, SHARP abstracts represent a subject package's 
access to existing packages, or packages containing common program units, 
using the Ada 'with' clause. Each of the accessed packages is represented 
by a small rectangle encapsulating its name, and a straight line drawn to 
the specification or body (as appropriate) of the accessing package. 

Having been taught the basic technology for accessing existing Ada packages 
and packages of common program units using SHARP, the student is then ready 
to learn Ada source code for this technology. To complete Lesson 8, the 
student is taught this code. For example, the code shown in Figure 118 can 
be used as the basis for this lesson. 

3.2.9  Lesson 9 - Ada at the Bottom and Course Completion 

After completing the first eight lessons, the student has been presented a 
wide range of Ada design and implementation factors in a top-down manner. 
As the student learned the technology of an object-oriented implementation 
using SHARP, the related Ada syntax and other code detail was introduced on 
an as needed basis. The final lesson summarizes the low level detail that 
has been introduced and introduces detail not yet mentioned. This final 
lesson can act as a bottom-up summary of what has been taught top-down. 

To complete the Ada course, it is important to summarize important concepts 
associated with the object-oriented approach to Ada software implementation 
and the cost ramifications of this approach. The need for comprehensive 
testing of individual objects must be stressed and basic steps in completing 
such testing introduced. The object-oriented Ada software development will 
be especially cost effective if individual object implementations are 
relatively error free so that object integration proceeds smoothly, as 
described in Chapter VI. 

4.   CHAPTER SUMMARY 

This chapter describes the application of SHARP in teaching object-oriented 
Ada technology to project managers and system engineers. It describes how 
software engineers and programmers can be taught Ada in a top-down manner 
using SHARP. 

It is important that appropriate Ada instruction is given to project 
managers and system engineers, as well as software engineers and 
programmers. Of course, the level of detail and emphasis of this 
instruction must vary in depth depending upon the target audience. 
However, the gap in knowledge between contractor team members must be kept 
small so that effective communication can take place during system 
acquisition. 
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Begin Procedure SOFT_DEV_ESTIMATE 

#SS - 0 

for p - 1,2, ... P 

for 0 - 1, 2, ... 0(p) 

#DATA - # TYPES (p,o) + #CONSTS(p,o) + #VARS(p,o) 

#PCALL - #SUBCALL(p,o) + #TASKS(p,o) 

#PBOD - #INSPECT_COUNT(p,o) 

DSI(p.o) - #DATA + #PCALL + #PBOD 

#SS - #SS + DSI(p.o) 

end loop  . 

end 1 nop                                            ..,,.._ , .,. 

if LANGUAGE - FORTRAN then 

#SS - #SS*FORTRAN_CALIBRATE 

else if LANGUAGE - JOVIAL then 

#SS - #SS*JOVIAL_CALIBRATE _ 

else if LANGUAGE_ASSEMBLY then 

*SS - #SS*ASSEMBLY_CALIBRATE 

else 

#SS - #SS*ADA_CALIBRATE   

end if  

raise exception 

if #SS= 2000 

© 

FIGURE 115.     EXAMPLE OF ANNOTATED PSEUDO CODE 
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case COCOM_MODE is 

when ORGANIC -> 

© 
K - 2.4 

E - 1.05 

when SEMI_DETACHED -> 

K - 3.0 

E - 1.12  . 

when EMBEDDED -> 

K - 3.6 

E - 1.2 

L case 

Call Procedure COST ESTIMATE 

Call Generic Procedure SCHEDULE_EST1MATE , 

where 

KGEN - K 

EGEN - E 

exception handler 

Call Procedure MODULE_ESTIMATE 

end exception handler ________ 

Package P10 

End Procedure SOFT DEV ESTIMATE 

FIGURE 115.     (CONCLUDED) 
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with P10; 

use P10; 

procedure SOFT_DEV_ESTIMATE(   ...   ) is 

TOO_SMALL:exception -- declare an exception 

procedure  ESTABLISH_TIME is new SCHEDULE_ESTIMATE 

(KGEN - K, EGEN = E);--generic instantiation 

begin 

NO_SS :- 0 

for  P   in  1   ..   CAP_P 

for 0  in  1 •• CAP_0 

NO_DATA:= NO_TYPES(P,0) + NO_CONSTS(P,0) + NO_VARS(P,0); 

NO_PCALL:= NO_SUBCALL(P,0) + NO_TASKS(P,0); 

NO_PBOD:= NO_INSPECT_COUNT(P,0); 

DSI(P.O):- NO_DATA + N0_PCALL + NO_PBOD; 

N0_SS:~ N0_SS + DSI(P.O); 

end loop; 

end loop; 

if LANGUAGE = FORTRAN then 

NO_SS:= NO_SS*FORTRAN_CALIBRATE 

elsif  LANGUAGE - JOVIAL then 

N0_SS:= NO_SS*JOVIAL_CALIBRATE 

elsif LANGUAGE - ASSEMBLY then 

N0_SS:- NO_SS*ASSEMBLY_CALIBRATE 

else 

N0_SS : «= NO_SS*ADA_CALIBRATE 

end if; 

FIGURE 116.    EXAMPLE OF ADA CODE OF A PROGRAM UNIT'S BODY 
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if NO_SS > TWO_THOUSAND then --raise the exception 

raise TOO_SMALL; 

end if; 

case COCOMO_MODE is 

when ORGANIC -> 

K:- 2.4    ; 

E:- 1.05 ; 

when SEMI_DETACHED -> 

K:- 3.0   ; 

E:- 1.12 ; 

when EMBEDDED -> 

K:- 3.6   ; 

E:- 1.2   ; 

end case; 

COST_ESTIMATE (   ...   ); 

SCHEDULE_ESTIMATE (   ...   );  -- execution of generic subprogram 

exception  -- handle the exception 

when T00_SMALL => 

M0DULE_ESTIMATE; 

end; 

FIGURE 116. (CONCLUDED) 
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P2 

PU_P1 

P1 

P3 
PU_P2a PU_P2b 

P2 

P4 

PU_P3 

P3 

P5 

P2 
PU-P4 PU_P5 

P4 P5 

FIGURE 117.  LAYERS OF ADA PACKAGES 
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package Pi is 

procedure PU_P1 (   ...   ); 

end PI; 

with P2; 

use P2; 

package body PI is 

end PI; 

package P2 is 

procedure PU_P2a (   ...   ) ; 

procedure PU_P2b (   ...   ); 

end P2; 

with P3; 

use P3; 

package body P2 is 

end P2; 

FIGURE 118.    BASIC ADA CODE FOR ACCESSING PROGRAM UNITS 
WITHIN ADA PACKAGES 
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with P4; 

use P4; 

package P3 is 

procedure PU_P3 (   ...   ); 

end P3; 

with P5; 

use P5; 

package body P3 is 

end P3; 

package P4 is 

procedure PU_P4 (   ...   ); 

end P4; 

package body P4 is 

end P4; 

package P5 is 

procedure PU_P5 (   ...   ); 

end P5; 

with P2; 

use P2; 

package body P5 is 

end P5; 

FIGURE 118. (CONCLUDED) 
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All members of the development team must be familiar with the concept of 
object-oriented design with Ada, and the cost ramifications of this 
approach. Only when complex dependency relationships between types, 
variables and program units are controlled, can large and complex software 
systems be developed in a cost effective manner. The old traditional 
approaches have proven to be expensive when used to implement large and 
complex computer programs. 

When teaching Ada to programmers, the source code can be taught in the 
context of an object-oriented design in a top-down manner. This approach 
provides a meaningful context for the many diverse Ada capabilities and 
provides a framework for the programmer to understand the cost 
ramifications of software implementation using Ada. 
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PART THREE:  AUTOMATION OF SHARP 

CHAPTER IX 

PHASED DEVELOPMENT OF AUTOSHARP 

The graphics presented in this document have been, in part, prepared at 
Arthur D. Little using an IBM dual drive personnel computer and the soft- 
ware package FREELANCE written by Graphic Communications, Inc. The command 
language of this software package is menu driven and relatively straight- 
forward to learn and use. With this computerized drawing capability, 
complicated diagrams presented in this report (e.g., the intermediate level 
hierarchy and invocation diagrams) took about 15 minutes each to prepare. 
The less complicated diagrams (e.g., low level subprogram data flow and 
task rendezvous diagrams) took about 5 minutes each to prepare. 

With the automation of SHARP, efficient interfaces between users of SHARP 
and FREELANCE, or some other graphics software package, will be developed. 

I.   INTRODUCTION 

1.1  BACKGROUND 

An automated SHARP capability is needed in the short-term, as the DoD 
software engineering community "gears up" for initial applications of Ada. 
For example, a SHARP software system for teaching Ada would help students 
attempting to grasp such complex notions as design abstraction and informa- 
tion hiding, in the context of object-oriented design, as discussed in 
Chapter VIII. 

Furthermore, in the short-term software engineers will have to establish. 
cost estimates for the development of Ada software. Existing cost models 
can be used to project Ada costs, based upon a projection of the number of 
source statements. An automated SHARP system for establishing the graphi- 
cal representation of an Ada design provides a framework for projecting the 
number of instructions required to implement a large and complex Ada 
computer program, in the manner discussed in Chapter VII. Such projections 
can be made automatically, as described in subsequent paragraphs of this 
chapter. 

As described in Chapters III and IV, an automated SHARP system would also 
be invaluable in the long-term, when major defense system contractors 
develop large and complex Ada computer programs. Such a graphical system 
should prove to be helpful to both contractor personnel and government 
personnel, especially in the preparation of graphics for design reviews and 
design documentation. With a SHARP software design system, the SHARP Ada 
abstracts could be generated in a timely manner, and easily iterated to 
update or optimize an Ada design. 
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Furthermore, as suggested in the next section, a SHARP software system 
should prove to be invaluable to Air Force personnel responsible for the 
maintenance of a large Ada computer program. 

1.1.1   Computer Aided Design 

Computer Aided Design (CAD) tools have existed for years to support the 
designers of electrical, mechanical and civil engineering systems. In the 
last two years, the development of such CAD systems for the design of Ada 
software has been initiated. For example, CAEDE (Carleton Embedded System 
Design Environment) is being developed by R.J.A. Buhr at Carleton 
University, Ottawa, Canada; and PAMELA (Process Abstraction Method for 
Embedded Large Applications) is being developed and implemented in the 
automated tool AdaGRAPH by George Cherry at The Analytic Sciences 
Corporation (TASC). 

Among other things, the following factors should be considered when develop- 
ing a CAD system for Ada. 

a. The design of a large and complex computer program to be 
implemented in Ada should be represented in a comprehensive 
but abstracted manner. 

b. Process synchronization and the implementation of applica- 
tions software should be kept simple to permit straight- 
forward testing not necessitating elaborate and costly 
proofs of temporal properties. 

c. The number of Ada tasks used in the implementation of 
applications software may have to be limited due to testing 
difficulties and the limitations of hardware architectures 
currently in existence. Existing hardware may not be able 
to support a large number of interacting tasks in a timely 
manner. 

d. Dependency relationships between types, variables and 
program units will have to be controlled to facilitate cost 
effective software development and to save money during 
software maintenance. 

We feel that SHARP complies with item a. We also feel that because of items 
b and c, extensive use of Ada tasks is not practical in the "real" world. 
Furthermore, we feel that because of item d defense contractors will have 
to take advantage of design techniques referred to as "object-oriented." 
In contrast with CAEDE and PAMELA, SHARP has been developed with emphasis 
on these factors. 

SHARP can be used to represent low level design detail in a manner similar 
to both CAEDE and PAMELA. However, it can also be used to directly repre- 
sent higher levels of an object-oriented design. We feel this level of 
design is very important. As demonstrated by the example presented in 
Chapter IV, large and complex computer programs can be composed with layers 
of objects.  Objects can be implemented with a source statement count that 
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allows compilation in a timely manner. By stubbing interacting object 
implementations, a given implementation can be relatively quickly compiled. 
The development of the such object implementations will also be relatively 
straightforward, as will be their integration if they are sufficiently 
decoupled. 

1.1.2 Knowledge-Aided Design (KAD) and Maintenance 

An Ada KAD system can represent the design of an Ada computer program using 
graphics, which represent the design in a comprehensive and abstracted 
manner. With it, software designers will be able to relatively rapidly 
generate abstracted design representations. The abstracts can be reviewed 
and the design representation iterated in order to, in some sense, optimize 
the design. Knowledge built into the KAD system will help guide inexperi- 
enced designers lacking extensive knowledge of Ada and object-oriented 
techniques. In this way, typical inefficiencies in design development and 
representation will decrease. 

Upon system turnover to users, graphical abstracts can be used to support 
software maintenance. The maintainer would be able to selectively produce 
abstracts that, in a systematic manner, zero in at the touch of a terminal 
key on parts of the program he must modify. The abstracts would make the 
complexities of the design readily apparent, as opposed to culling thou- 
sands of statements in a source code listing. The exclusive use of source 
code to maintain a large and complex computer program has proven to be very 
expensive, as we have already indicated. 

1.1.3 Automatic Programming and Cost Estimation 

In addition to being used to establish design abstracts, a design knowledge 
base established by a user of a KAD system could also be mapped into Ada 
source code. The code would encompass aspects of the design directly 
accounted for in the design abstracts. This code could, in turn, be 
expanded and refined by a programmer using a syntax directed editor. In 
the field of artificial intelligence, this capability is referred to as 
automatic programming and knowledge engineering. 

Knowledge Engineering utilizes expert knowledge and heuristics to generate 
a computer program in a specific high order language. This is accomplished 
by introducing the knowledge in the form of rule-type data structures, 
which can be added to or removed from the knowledge base. 

Automatic Programming systems are said to be knowledge-based when they 
encompass knowledge or expertise for program synthesis, including program- 
ming knowledge. Programming knowledge includes both programming language 
knowledge and the semantics of the high order language in which the com- 
puter program will be written. It may include general programming know- 
ledge about such general computational mechanisms such as initialization, 
loops, sorting, searching, linked lists and hashing. It also may include 
planning, optimization, and high-level programming techniques. 
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1.1.4  Size Metric Derivation 

The design knowledge base could also be mapped into a size metric. The 
size metric, along with user inputs on the attributes of the software 
acquisition, could be used as inputs to a cost estimation algorithm that 
projects the cost to build a large and complex computer program. In this 
way, the cost estimation problem is merged with the automated design 
process so that meaningful estimates can be generated in a timely manner. 

1.2  CHAPTER SCOPE 

In this chapter, Section 2 provides an overview of AdaGRAPH and CAEDE, two 
Ada-unique computer-aided programming systems. Section 3 suggests a phased 
development of an Automated SHARP system, which we refer to as AUTOSHARP. 
The system encompasses capabilities for KAD, Ada-unique automatic program- 
ming and Ada-unique cost estimation. 

2  EXISTING CAD SYSTEMS 

As we have indicated, automated systems that support the design and imple- 
mentation of Ada computer programs have been extensively investigated.  As 
examples of such systems, let us consider AdaGRAPH (PAMELA) and CAEDE. 

2.1  AdaGRAPH (PAMELA) 

AdaGRAPH is an automated system that supports the development of large 
software systems in Ada. It automates the capabilities of PAMELA, which 
(as we have indicated) is the requirements abstraction technique being 
marketed by TASC. As such, AdaGRAPH acts as the syntax-directed graphical 
editor and compiler of PAMELA. 

PAMELA is an Ada-specific method for (a) transforming a software require- 
ments specification into a design and (b) transforming the design into Ada 
source statements.  It supports a user in undertaking the following: 

a. A 'Specification' step, where software requirements are 
transformed into a hierarchical process graph. The user 
develops a graph of external entities and the software 
interfaces with them. This graph is then expanded in an 
abstracted manner to show the major events associated with 
each entity. The results can be iterated by the development 
team. 

b. An 'Architectural Design' step, where program units are 
identified to implement the events established in the first 
step. 

c. A 'coding' step, where "skeleton" code is automatically 
generated for program unit calls. Then using a syntax 
directed editor, a programmer is able to establish the 
detailed code needed to implement each of the called program 
unit. 
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PAMELA functions on a semantic level but is not knowledgeable about the 
heuristics of object-oriented design. When representing the design of an 
Ada computer program, PAMELA is limited to only a hierarchy diagram of 
program units and does not graphically distinguish between the different 
kinds of Ada program units. As such, it does not provide a comprehensive 
graphical representation of an Ada design, whether being developed using 
traditional or object-oriented techniques. PAMELA also appears to be 
preoccupied with extensive use of tasking (which we feel is not practical, 
as discussed in Section 1.1.1) and does not provide an explicit mechanism 
for representing object-oriented designs for Ada (which we feel will be 
necessary for pragmatic reasons, as discussed throughout this document). 

However, it does appear to provide a viable graphical mechanism for system- 
atically presenting the requirements for a software package in an abstract- 
ed manner. As such, it could be used at the requirements analysis level, 
prior to comprehensively establishing an Ada design (e.g., using a tool 
like AUTOSHARP). 

2.2  CAEDE 

CAEDE is an automated system that supports establishing the structural 
design of Ada programs using icons. CAEDE allows the user to enter struc- 
tural and temporal design information using a graphics interface. It 
serves as a basis for design analysis and skeleton code generation. It 
facilitates, under control of the interface, the entrance of program 
"strips" to fill in the functional gaps in the skeleton code. The iconic 
information is converted automatically into a Prolog design data base of 
facts and rules, for off-line temporal assessment. 

CAEDE represents design level abstractions modeled on selected features of 
Ada as graphical icons.  It supports a user in undertaking the follow;; 
four steps: 

a. A 'Structure of the Level' step, where a schematic diagram 
of the program components and their interactions is 
produced. 

b. A 'Temporal Behavior' step, where temporal behavior is 
described for tasks across interfaces, blocking and unblock- 
ing of tasks at the interfaces, and the enabling and disabl- 
ing of blocking conditions at the interfaces. 

c. A 'Specification of Internal Temporal Characteristics' step, 
where the designer specifies the characteristics that are 
required to achieve the temporal interface behavior. 

d. A 'Program Strip Definition' step, where sequential program 
fragments are provided to fill in the gaps in the skeleton 
code produced by the previous steps. They are entered into 
the skeleton program using the iconic interface. 
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CAEDE uses Prolog rules to generate Ada code skeletons from the Prolog 
facts in the design data base. Using Prolog for compiler implementation is 
advantageous in that Prolog has the ability to perform translations given 
only the translation rules. The system contains language syntax rules in 
order to generate a legal program satisfying the syntax rules. Construc- 
tion of Ada code under these rules proceeds until a decision must be made - 
then the system consults the Prolog facts in the data base, resolves 
issues, and produces the skeleton code. 

CAEDE can be considered a prototype of a commercial CAD/automatic program- 
ming system. Its method of nesting program units using icons is limited 
(i.e., its graphical notation would be difficult to apply in large and 
complex software systems). Like PAMELA, it is heavily oriented towards 
extensive use of Ada tasks, which we feel is not practical. 

3.  PHASES OF DEVELOPMENT 

SHARP provides a set of pictorial abstracts that can be used to represent 
the design of an Ada computer program in a comprehensive manner. SHARP can 
be used to represent all extremes of design with respect to both size or 
design methodology. The abstracts of SHARP can be generated as a product 
of a knowledge based intelligent design system for Ada, capable of design, 
automatic programming and cost estimation. AUTOSHARP Version I provides an 
Ada-unique capability for knowledge aided design (KAD). AUTOSHARP Version 
II provides an Ada-unique automatic programming capability and AUTOSHARP 
Version III provides an Ada-unique cost estimation capability. 

3.1  AUTOSHARP VERSION I (KAD) 

AUTOSHARP Version I is a KAD system used to establish the SHARP graphical 
representation of the design of a computer program to be implemented using 
Ada. Version I interfaces a user (a software designer) with software 
graphical packages, which can be used to create pictographic abstracts of 
large and complex computer programs to be implemented in Ada. 

3.1.1  Version I Description 

The core of AUTOSHARP Version I is a knowledge based system envisioned as 
follows: 

: AUTOSHARP 

* 

Description  : 
Method      : 

Natural Language, Description by Method 
Example, and Graphical Description 

Target      : 
Language     : 

Ada 

Problem     : 
Domain 

Efficient Object-Oriented Design and 
Traditional Design Abstraction 

System      : 
Approach 

Knowledge Engineering 
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As shown in Figure 119, AUTOSHARP Version I will consist of (a) classic 
primary elements -- a User Interface, an Inference Engine, and a System 
Knowledge Base, and (b) task specific elements -- a Help capability, a User 
Interface Enhancer, a Library of Reusable Software, a Graphics Mapper and 
a Graphics Generator. 

3.1.1a Primary Elements 

The 'User Interface' will receive and manipulate information establishing 
the design of the computer program. The user will enter data using menus, 
tables and natural language interface. 

The 'Inference Engine' will perform reasoning using domain specific 
information. It will review the design as a function of the problem domain 
to identify any potential design deficiencies, based upon rules formulated 
within the Knowledge Base . The Inference Engine will detect missing 
information and will bring such problems to the attention of the user. 
The 'Knowledge Base' will encompass facts, definitions and rules applicable 
to the consistency and completeness of the overall design. 

3.1.lb  Task Specific Elements 

The 'Help Capability' provides a menu of selectable guidance to the 
designer, relevant to the use of AUTOSHARP and both object-oriented design 
(OOD) techniques and traditional techniques. For example, 00D help 
includes tutorial information on object selection, operations unique to an 
object implementation, local data structures and passing parameters between 
object implementations. 

The 'Library of Reusable Software' contains design information for existing 
object implementations (e.g., a Fast Fourier Transform) and components used 
to implement objects (e.g., math functions and routines for such things as 
stacks, queues and trees). 

The user 'Interface Enhancer' provides capability for enhancement to the 
interface, allowing a diverse number of variations for information input 
(e.g., a Natural Language (English) capability, Touch-screen capability, 
Digitizing Pad capability, and Ada Command capability). 

The 'Graphics Mapper' produces SHARP pictographic commands as a function of 
the user generated knowledge. The Graphics Generator receives the commands 
from the Graphics Mapper and produces SHARP pictographs on a display and/or 
printer. 

3.1.2  Version I Operation 

With AUTOSHARP, an operator can describe the design of a computer program. 
The description, in English, could be: 

"Show MAIN as the main program with three tasks declared to 
represent processes. The tasks shall be named COMM_LINK, 
WORK STATION and BUILT IN TEST". 
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The User Interface would accept this data, and the Knowledge Engineering 
segments would, through the use of facts, rules, and heuristics, yield a 
legal and correct Ada conceptual construct which would become input to the 
Graphics Mapper. The Mapper would generate output for the Graphics 
Generator yielding the SHARP abstract shown in Figure 120. 

3.1.3   Scope of the AUTOSHARP Knowledge Base 

It is envisioned that the Knowledge Base of AUTOSHARP will consist of rules 
concerning the semantics, grammar, and features of the Ada language. In 
addition, the knowledge base must include knowledge of the specifics of 
SHARP and SHARP'S own internal rules. Knowledge about the rules them- 
selves, metaknowledge or heuristics, must also be included. 

The Knowledge Base is envisioned as having rules similar to these following 
English-like examples: 

"If this is the main program 
then information is needed 

on the number of packages that are to be 'withed', 
on whether or not to 'with' TEXT I/O, 
on whether or not to 'with' SEQUENTIAL I/O, 
on whether or not to 'with' DIRECT I/O, 
on the names of developed packages to be 'withed', 
on the names of subprograms to be declared, 
and on the names of tasks to be declared." 

"If this is a process 
then information is needed 

on the number of objects, 
on the alpha-numeric identifier of the first object, 
on whether or not this object is a package or task, 
on the names of other program units in the package with which 

this unit will communicate, 
on the name of an interacting object, 
on the name of the second object, 
on whether or not this object is a package or task, 
on the names of other program units in the package with which 

this unit will communicate, 
on the name of another interacting object, 

it 

and so on. 

"If this is an object 
then information is needed 

on the object name, 
on the applicable process number, 
on the visible data structure type definitions, 
on the local data structure constant definitions, 
on the names of communicating program units, 

ii 

and so on. 
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By codifying these rules into the knowledge base, the design problem can be 
described very precisely with no ambiguity.  Since the system is inter- 
active with the user, any partial information can be elaborated via a 
question and answer dialogue with the user.  In this way, AUTOSHARP can 
further specify the precise nature of the design. 

3.1.4  Mapping the Output 

As shown on Figure 121, SHARP abstracts will be available to the user 
after the output from the Knowledge Base is processed through the Graphics 
Mapper and the Graphics Generator. The Mapper will contain the facility to 
translate the resultant design structure provided by the Knowledge Base 
into a form suitable for input into the Graphics Generator. This segment 
will, most likely, translate design structure commands into the appropriate 
geometric form and, in order to view various size segments of the design, 
manipulate the display into a suitable scale. The Graphics Generator 
therefore need only be a relatively precise drafting/text generation 
software package. 

3.2  AUTOSHARP VERSION II (CODING CAPABILITY) 

The second phase of the implementation of AUTOSHARP adds capabilities to 
generate Ada source code listings that correspond to the design graphics 
generated with Version I of AUTOSHARP. As shown by bold face in Figure 
122, the core of AUTOSHARP Version II will add two elements to Version I -- 
an Ada "Skeleton" Code Generator and an Ada Syntax Directed Editor. 

The Ada Code Generator uses the output of the knowledge base to provide the 
programmer with existing code from the library of reusable software and 
"skeleton" code of legal, correct Ada for the rest of the design estab- 
lished with AUTOSHARP Version I. This code implements to the extent 
possible the design represented by high, intermediate and low level SHARP 
abstracts, and flags gaps where they exist. 

The Ada Syntax Directed Editor can then be used by a programmer to refine 
and complete the code. This editor, knowing the "rules" of the language, 
provides the capability to produce the detailed Ada source code listings in 
a computer-aided manner. It is used to integrate the detailed code into 
the "skeleton" code produced automatically by the system. As an example, 
suppose the system outputs the following "skeleton" code -- 

task body ALERTER is 

select 
ALARM.POST_ALARM (. . .); 

else 
. . . **Alternative Required** 

end select; 

end ALERTER; 

where **Alternative Required** is a message from the system alerting the 
designer that further information must be provided for legal coding. The 
designer could then "flesh out" the code as follows: 
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task body ALERTER is 

select 
ALARM.POST_ALARM (. . .); 

else 
accept STOP 

end select; 

end ALERTER; 

At this point, the AUTOSHARP system is capable of the following: 

Interfacing with the user 
"Translating" user requests into a manipulatable form 
Making  inferences  about  Ada  program  design  through  use  of 
the Knowledge Base 
Producing output to the Mapper 
Producing Pictographs from the Mapper via the Graphics Generator 
Producing Ada "Skeleton" Code 
Producing Ada Source Code Listings 

The utility of such a system is apparent in that the KAD/automatic program- 
ming capabilities of AUTOSHARP would increase the productivity of software 
designers and programmers. Therefore, a significant increase in the 
productivity of software design and source code generation would yield 
significant savings to the overall software development effort. These 
gains are in addition to the gains that can already be realized through the 
use of object-oriented design techniques implemented with Ada, as quanti- 
fied in the manner described in Chapter VII and represented (for a 
representative example) in Figure i of the Executive Summary. 

3.3 AUTOSHARP VERSION III (COST ESTIMATION) 

A basic task for a manager of a software acquisition is the calculation of 
accurate cost estimates. Such estimates are needed by the government to 
establish meaningful budgets, provide the basis to assess contractor bids 
and monitor the progress of software work from a cost point of view. 

Most existing software cost models operate on a projection of the software 
size to establish their estimates. It is not possible to make accurate 
cost estimates without accurate size estimates. The absence of a credible 
size metric reminds one of the Vermont farmer who attempts to weigh his 
pigs, before going to market. He carefully balances his scale using rocks 
and then guesses at the weight of the rocks. 

To avoid "guessing at the weight of the rocks", AUTOSHARP introduces seg- 
ments needed to interlock the design process with the cost estimation 
process. Specifically, as shown by bold face in Figure 123, AUTOSHARP 
Version III will add elements to Version II -- an Estimation Interface, 
Knowledge Base Accessor and Cost Estimate Calculator. 
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The Estimation Interface communicates with an estimator to establish data 
describing the software acquisition (e.g., metrics describing product 
attributes, the computer used, and development personnel). 

The Knowledge Base Accessor will communicate with the Knowledge Base in 
order to retrieve essential design data to accurately estimate the size 
metric for the subject computer program. 

Cost Estimate Calculator is specifically designed to process user and 
knowledge base information using applicable algorithms for cost estimation 
(e.g., COCOMO) customized to the design methodology to be applied. 
Analogous to a spreadsheet, changes in the knowledge base's data used to 
derive the program size and complexity can be communicated directly into 
the cost model. Rather than relying on the traditional educated guess 
regarding size and design variations, such information can be directly 
extrapolated. In this way, the cost ramifications of design variations can 
be assessed. The establishment of algorithms needed to make such an 
extrapolation are provided in Chapter VII. 

3.4 AUTOSHARP METAKNOWLEDGE 

An inherent advantage to introducing rule based data within the knowledge 
base is that the system can contain rules about the rules. Thus the system 
itself is able to infer, within the accuracy of its original data, answers 
to questions which are not typically answerable by a system. Consider 
asking your word processor how many paragraphs are now in this document. 
Because of the conceptual structures used to create representations of 
knowledge, knowledge of the program itself is not transparent to the 
system. As an example, AUTOSHARP will compare a user's design to that of 
a KAD model of the design. Possible deficiencies in the user's design can 
be detected and brought to the user's attention. Since the system can 
"see" its own design and code, a query concerning the number of pictographs 
and lines of code can be raised. 

Additionally, key words can be counted or otherwise analyzed (depending on 
the usual restraints -- how much memory is available, how sophisticated the 
cost estimation search is allowed to be, etc.). 

4  BENEFITS OF AUTOSHARP 

The design of large, complex computer programs is a costly and challenging 
process. Furthermore, a design will increase or decrease subsequent 
software work during test, system integration and maintenance. Designers 
of Ada unique software must typically establish a set of packages to 
encompass all its major parts, must carefully design each package and its 
interface to eliminate complex dependencies, and must design each package 
in an abstracted manner. AUTOSHARP will help designers establish correct 
designs, will help programmers establish error-free code and will help 
managers by providing accurate reliable costing data. These capabilities 
are all critical to lower costs in the development of software using Ada. 
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Through the use of a knowledge-base and KAD techniques inherent in AUTO- 
SHARP, a designer can create a program design graphically. This design 
will be consistent with the rules of Ada, and the resulting design graphics 
will violate neither any tenets of the design philosophy nor any graphical 
rules. 

AUTOSHARP will produce "skeleton" code in accordance to a set of rules on 
the grammar, syntax, structure, and typing of Ada. This "skeleton" code 
will be correct when produced. This production of code will increase the 
amount of viable coding being done by a programmer and, as a side effect, 
constrain the universe of testing. 

Inasmuch as the Knowledge Base contains rules and rules about rules, 
inaccurate designs will be questioned by the system and designers con- 
strained to designs within the parameters of proper object-oriented code. 
This will, in the long run, create programs that are technically superior 
and cost effective. Should large numbers or programs be created under a 
single set of well-defined, well-constrained, and well-founded rules, the 
style of such programs will be consistent and therefore familiar to the 
professionals maintaining them. Because of this, they will be less dif- 
ficult to maintain. Since software maintenance costs are very high, this 
capability is significant. 

Another beneficial capability of AUTOSHARP is the cost estimator. Given 
accurate models, the system will have the capability to query itself and 
provide data on the variables effecting the design cost. This information 
should be significantly more readily available than it is now. Cost 
estimation using AUTOSHARP could be such a facile task that metrics and 
estimates could be generated essentially at the touch of a terminal key, as 
opposed to several months of analytical effort. The estimates also could 
be readily generated so that "what if" and design tradeoff studies could be 
performed. More, importantly the accuracy of the estimates would be 
superior to those produced in the past at great cost, since the estimates 
would be driven by up-to-date and accurate projections of the software 
size. 
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APPENDIX A 

CRITERIA FOR SHARP 

A. GENERAL 

1.  Graphical representation of a computer program to be implemented in Ad3 
shall meet the criteria set forth in Paragraph B below. 

B. CRITERIA 

1. Pictographs for Program Units 

a. A subprogram must be represented by a square. 

b. A task must be represented by a parallelogram. 

c. A package must be represented by a rectangle. 

d. Each pictograph must be divided by a horizontal line into a narrow 
part representing its specification and a wide part representing its 
body.  For a generic program unit, the dividing line is dashed. 

e. The specifications of Ada subprograms and tasks contained within a 
package, and directly accessed by program units external to the 
package, must be shown within the package's specification. The bodies 
of these subprograms and tasks must be shown within the package's 
body. 

2. Hierarchy Diagram for the Main Program of an Ada Computer Program 

a. The Ada main program must be represented by the pictograph for i 
subprogram. 

b. A straight line must be drawn from the body of the Ada main program to 
each pictograph used to represent an Ada task introduced to implement. 
a process. 

c. A straight line must be drawn from the body of the Ada main program to 
each pictograph used to represent an Ada subprogram declared in the 
Ada main program. 

d. A small rectangle must be introduced to represent each Ada "with" 
clause applicable to the Ada main program. A straight line must be 
drawn from each rectangle to the specification of the Ada main 
program. 

e. A dotted line must be drawn from the specification of each Ada task 
(representing a process) to a geometric representation of an external 
interface with the task, when appropriate. 

f. The name of each Ada subprogram, task and package must be clearly 
shown within, or adjacent to the corresponding pictograph. 
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3. Ada Package Catalog 

a. The names of Ada packages used in the implementation of a large Ada 
computer program must be shown in a set of cells within a rectangle. 
Each cell must contain the name of one package. 

b. The name of a generic package must be encapsulated by a cell drawn 
with dashed lines within the package's cell. 

4. Ada Package Content Diagram 

a. Visible program units declared in the specification of a package must 
be provided in the pictograph for a package. 

b. Hidden program units, other than a nested package, do not have to be 
shown. 

c. A nested package must be shown under the subject package, with a 
straight line drawn from the body of the subject package to the 
specification of the nested package. 

d. A straight line must be drawn to the package's specification or body, 
as appropriate, from a small rectangle to indicate a package "with" 
clause. 

e. The name of a package, nested packages and packages accessed through 
the "with" clause must be clearly shown within, or adjacent to the 
corresponding pictograph. 

5. Hierarchy Diagram 

a. The subject program unit must be assigned to Level 1. 

b. Program units nested within the subject program unit must be assigned 
to Level 2. 

c. Program units nested within a program unit at Level n must be assigned 
to Level n+1. 

d. A straight line must be drawn from the body of a program unit at Level 
n to the specification of a nested program unit at Level n+1. In this 
way, all levels of abstraction must be established. 

e. A straight line must be drawn from a small rectangle indicating a 
package "with" clause to the program unit to which the clause applies. 

f. The name of each subprogram and task, and each package accessed 
through the "with" clause, must be clearly shown within, or adjacent 
to, the pictograph that represents it. 
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6. Invocation Diagram 

a. A straight arrow must be drawn to the specification of a subprogram 
from the body of the program unit that called it. 

b. A curved arrow must be drawn to the specification of an acceptor task 
from the body of a calling task to represent task rendezvous. 

c. A subprogram or task must be bounded by a square or rectangle if it 
is contained within a package other than the package containing the 
calling program unit. The bounding square or rectangle must be dashed 
if the subject program unit is generic. 

d. Any subprogram or task, which depends upon some transient condition in 
order to be accessed (for example, 'select,' 'accept,' 'if,' or 'case' 
statements), must be pictorially represented as if it were accessed. 
The fact that such access is conditional must be expressed by a tilde 
(i.e., a short undulating line) placed on the arrow indicating acces- 
sion. 

e. Except in recursive cases and loops, if a subprogram or task (i.e., 
any program unit) is called n times during the execution of a program, 
the program unit must be shown n times in an invocation diagram. 

f. Recursive calls must be represented by arrows with heads pointing to 
both of two program units or by "feedback loops," with an asterisk 
provided adjacent to the doubled headed arrow or "feedback loop." 

g. The names of each program unit must be clearly shown within, or 
adjacent to, the pictograph that represents it. 

7. Task Rendezvous Diagram 

a. A task entry point must be represented by a small parallelogram that 
overlaps the task's specification and body. 

b. A call to an Ada task must be represented by three arrows from the 
body of the calling task to an entry point in the acceptor task. One 
arrow must have its head pointing to the entry point, to represent the 
"in" mode of parameter passing. A second arrow must have its head 
pointing to the body of the calling task, to represent the "out" mode 
of parameter passing. The third arrow must have two heads, thus 
pointing to both the entry point and the body of the calling task, to 
represent the "in out" mode of parameter passing. If one or more of 
the modes are not applicable, the arrows can be omitted. 

c. A conditional call must be indicated by tilde across the three arrows 
running from the body of the calling program unit to the entry point. 
The letter "T" is shown adjacent to the tilde a time conditional call 
is to be made. 
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d. Conditional acceptance of a call must be indicated by a tilde within 
the affected entry point, or the letter "T" within the entry point if 
a time conditional acceptance applies. Acceptance on a fixed order 
basis must be represented by numbers within the affected entry points, 
where "1" indicates first. Acceptance on a first arrival basis must 
be represented by a line connecting the affected entry points. 

e. Parameters received by the accepting task must be represented by 
shaded circles on the line representing the "in" mode; parameters 
received by the calling task must be represented by shaded circles on 
the line representing the "out" mode; and parameters transferred in 
the "in out" mode must be represented by shaded circles on the line 
representing the "in out" mode. 

f. The names of each task must be clearly shown within, or adjacent to 
the pictograph. Entry point names and names for passed parameters must 
be clearly shown adjacent to the corresponding pictograph. 

8. Subprogram Data Flow Diagram 

a. A call from one subprogram to another must be represented by three 
arrows drawn from the body of the calling subprogram to the specifica- 
tion of the called subprogram. One arrow must point to the specifica- 
tion of the called subprogram to represent the "in" mode of parameter 
passing; one arrow must point to the body of the calling subprogram to 
represent the "out" mode of parameter passing; and the third arrow 
must have two heads, thus pointing to both the called subprogram and 
the body of the calling subprogram, to represent the "in out" mode of 
parameter passing. If one or more of the modes are not applicable, 
the arrows can be omitted. 

b. A conditional call must be indicated by a tilde across the three 
arrows running from the body of the calling program unit to the 
specification of the called program unit. 

c. Parameters received by the called subprogram must be represented by 
shaded circles on the line representing the "in" mode; parameters 
received by the calling subprogram must be represented by shaded 
circles on the line representing the "out" mode; and parameters 
transferred in the "in out" mode must be represented by shaded circles 
on the line representing the "in out" mode. 

d. Names for subprograms and passed parameters must be clearly shown. 

9. Generic Program Units 

a. In the pictograph for a generic program unit, the horizontal line 
drawn to divide a pictograph into a narrow part (representing a 
program unit specification) and from a wide part (representing its 
body) must be dashed. 

b. In a data flow and task rendezvous diagram, circles representing 
generic parameters to be passed must not be shaded. 

c. The small rectangle used to represent the Ada "with" clause must be 
dashed if the relevant program unit is generic. 
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10. Data Structure Diagram 

a. Type declarations must be represented by a series of upright narrow 
rectangles, side-by-side. 

b. Constant declarations must be represented by a series right-slanted 
rectangles, side-by-side. 

c. Variable declarations must be represented by a series of left-slanted 
rectangles, side-by-side. 

d. The geometric representation of visible declarations must not be 
shaded; the geometric representation of hidden declarations must be 
shaded. 

e. The geometric representation of private declarations must be half 
shaded and half unshaded. 

f. The name of each type, constant, and variable must be clearly shown in 
a glossary. The glossary entries must be referenced by numbers placed 
directly over the geometric figures representing each type, constant 
and variable. 

g. Directly under the geometric representation of a type, the letters 
"AR" must appear if the type is an array type; the letter "R" must 
appear if a record type; the letter "D" must appear if a discriminated 
type; the letters "AC" must appear if an access type; the letter "T" 
must appear if a task type; the letter "I" mustr appear if an integer 
type; the lettrs "RL" must appear if a real type; and the letters "EN" 
if an enumeration type. 

h. Directly under the geometric representation of each constant and 
variable, the type of the variable or constant must be represented by 
(1) the first letter of a predefined type (e.g., I for INTEGER) or (2) 
the letter "T" followed by the type glossary number of a defined type, 
as appropriate. 

11. Annotated Pseudo Code 

Annotated pseudo code must be used to represent design requirements to be 
implemented in the body of a subject program unit. The annotated pseudo 
code must represent the design using text subject to the following use of 
key words and annotation. 

a. Pseudo code for logic and decisions must be introduced and terminated 
by Ada control statements. These key words include 'if-then,' 
'if-then-else,' if-then-elsif,' and 'end if.' 

b. Pseudo code for loops must be introduced and terminated by Ada loop 
statements. These key words include 'loop,' 'end loop,' 'exit,' 
'while,' and 'for.' Nested brackets (closing on the right side) must 
be used to identify the start and stop of program units, loops and 
conditional clauses. 
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c. A called program encapsulated in an external package must be signified 
by a small rectangle containing the name of the external package to 
the right of the call, with a line drawn from the small rectangle to 
the pseudo code for the call. 

d. Pseudo code for generic instantiation must be bracketed (closing on 
the right side) with a dashed line. 

e. Pseudo code for exception detection must be introduced by the key 
words 'raise exception' and must be bracketed (closing on the right), 
where the right side of the bracket is diamond shaped. 

f. Pseudo code for exception handling must be introduced by the key words 
'exception handler' and must be bracketed (closing on the right), 
where the right side of the bracket is diamond shaped. A line must be 
drawn from the 'raise exception' bracket to the 'exception handler' 
bracket. 
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APPENDIX B 

SAMPLE ABSTRACTED ADA "SKELETON" CODE LISTING 

with GLOBALJTYPES; 
use GLOBALJTYPES; 
procedure MAIN is 

task COMM_A; 
task body COMM_A is separate; 

task COMM_B; 
task body COMM_B is separate; 

procedure INITIALIZE is separate; 
procedure RESTART is separate; 

end MAIN; 

-- MAIN, Level 1, Unit a 

(MAIN) 
procedure INITIALIZE is 

procedure PU_M2a is separate; 

begin -- INITIALIZE 

end INITIALIZE; 

-- MAIN, Level 1, Unit b 

separate (MAIN) 
procedure RESTART is 

procedure PU_M2b is separate; 
procedure PU_M2c is separate; 

begin -- RESTART 

end RESTART; 

•separate 



MAIN, Level 2, Unit a 

separate (MAIN.INITIALIZE) 
procedure PU_M2a is 

procedure PU_M3a is separate; 

begin -- PU_M2a 

end PU M2a; 

- MAIN, Level 2, Unit b 

separate (MAIN.RESTART) 
procedure PU_M2b is 

begin -- PU_M2b 

end PU M2b; 

- MAIN, Level 2, Unit c 

separate (MAIN.RESTART) 
procedure PU_M2c is 

procedure PU_M3b is separate; 
procedure PU_M3c is separate; 

begin -- PU_M2c 

end PU M2c; 
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* 

-- MAIN, Level 3, Unit a 

with P3; 
use P3; 
separate (MAIN.INITIALIZE.PU_M2a) 
procedure PU_M3a is 

procedure PU_M4a is separate; 

begin -- PU_M3a 

end PU M3a; 

- MAIN, Level 3, Unit b 

separate (MAIN.RESTART.PU_M2c) 
procedure PU_M3b is 

begin -- PU_M3b 

end PU M3b; 

MAIN, Level 3, Unit c 

separate (MAIN.RESTART.PU_M2a) 
procedure PU_M3c is 

begin - - PU_M3c 

end PU M3c; 

•MAIN, Level 4, Unit a 

with P6; 
use P6; 
separate (MAIN.INITIALIZE.PU_M2a.PU_M3a) 
procedure PU_M4a is 

begin - - PU_M4a 

end PU M4a; 
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- THREAD A, Level 1, Unit a 

separate (MAIN) 
task body COMM_A is 

procedure PU_A2a is separate; 
task PU_A2b is 

entry A; 
entry B; 

end task PU_A2b; 
task body PU_A2b is separate; 

begin -- COMM_A 

end COMM_A; 

THREAD A, Level 2, Unit b 

separate (MAIN.COMM_A) 
task body PU_A2b is 

procedure PU_A3b is separate; 
procedure PU_A3c is separate; 

begin -- PU_A2b 

end PU A2b; 

THREAD A, Level 3, Unit a 

with P7; 
use P7; 
separate (MAIN.COMM_A.PUA2a) 
procedure PU_A3a is 

procedure PU_A4a is separate; 
procedure PU_A4b is separate; 

begin -- PU_A3a 

end PU A3a; 
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- THREAD A, Level 3, Unit b 

separate (MAIN.COMM_A.PU_a2B) 
procedure PU_A3b is 

begin -- PU_A3b 

end PU A3b; 

THREAD A, Level 3, Unit c 

with P9; 
use P9; 
separate (MAIN.COMM_A.PU_A2b) 
procedure PU_A3c is 

begin -- PU_A3c 

end PU A3c; 

THREAD B, Level 1, Unit a 

separate (MAIN) 
task body COMM_B is 

procedure PU_B2a is separate; 
task PU_B2b is 

entry C; 
entry D; 

end task PU_B2b; 
task body PU_B2b is separate 

begin -- COMM_b 

end COMM B; 
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-- THREAD B, Level 2, Unit a 

separate (MAIN.COMM_B) 
procedure PU_B2a is 

procedure PU_B3a is separate; 

begin -- PU_B2a 

end PU B2a; 

THREAD B, Level 2, Unit b 

separate (MAIN.COMM_B) 
task body PU_B2b is 

procedure PU_B3b is separate; 
procedure PU_B3c is separate; 

begin -- PU_B2b 

end PU B2b; 

-- THREAD B, Level 3, Unit a 

separate (MAIN.COMM_B.PU_B2a) 
procedure PU_B3a is 

procedure PU_B4a is separate; 

begin -- PU_B3a 

end PU B3a; 
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-- THREAD B, Level 3, Unit a 

separate (MAIN.COMM_B. PU_B2a) 
procedure PU_B3a is 

procedure PU_B4a is separate; 

begin -- PU_B3a 

end PU B3a; 

- THREAD B, Level 3, Unit b 

with P9; 
use P9; 
separate (MAIN.COMM_B.PU_B2b) 
procedure PU_B3c is 

procedure PU_B4c is separate; 

begin -- PU_B3c 

end PU B3c; 

THREAD B, Level 4, Unit a 

separate (MAIN.COMM_B.PU_B2a. PU_B3a) 
procedure PU_B4a is 

begin -- PU_B4a 

end PU B4a; 
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THREAD B, Level 4, Unit b 

separate (MAIN.COMM_B. PU_B2b. PU_B3b) 
procedure PU_B4b is 

begin -- PU_B4b 

end PU B4b; 

- THREAD B, Level 4, Unit c 

witb P10; 
use P10; 
separate (MAIN.COMM_B.PU_B2b. PU_B3c) 
procedure PU_B4c is 

begin - - PU_B4c 

end PU B4c; 

-- PACKAGE P3 

package P3 is 

end P3; 
package body P3 is 

end P3; 
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-- PACKAGE P6 

package P6 is 

end P6; 
package body P6 is 

end P6; 

-- PACKAGE P7 

package P7 is 

end P7; 
package body P7 is 

end P7; 

-- PACKAGE P8 

package P8 is 

end P8; 
package body P8 is 

end P8; 

319 



-- PACKAGE P9 

package P9 is 

end P9; 
package body P9 is 

end P9; 

-- PACKAGE P10. 

package P10 is 

end P10; 
package body P10 is 

end P10; 
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APPENDIX C 

REQUIREMENTS FOR A HYPOTHETICAL SPACE STATION COMPUTER PROGRAM 

1.0 INTRODUCTION 

This specification presents requirements for a computer program to operate 
in a hypothetical space station. The computer program shall provide 
capabilities for: 

a. Experiment data collection and processing 

b. Environmental sensor monitoring and alarm generation for out 

of bound environmental readings 

c. Space station solar panel orientation correction by command 

from ground control stations 

d. Built-in test of the computer hardware 

1.1 EXPERIMENT DATA COLLECTION AND PROCESSING 

1.1.1 Data Collection and Storage 

The program shall collect data for three experiments and assemble data 
samples. A data base shall be established to store experiment data samples 
in local memory for immediate processing. Provisions shall be for archiv- 
ing an experiment's data samples in a mass memory medium or when the 
allocated local memory is full. 

1.1.2 Operator Interface 

A work station interface shall be provided for operator input. The 
operator shall be able to enter commands for viewing available data 
samples or initiating statistical processing of a data sample 

1.1.3 Data Processing 

The operator shall be able to initiate the calculation of a data sample's 
mean, standard deviation, and statistical distributions (i.e., normal or 
Poisson). The results of the calculations shall be displayed on the work 
station. 
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1.2 ENVIRONMENTAL SENSOR MONITORING 

1.2.1 Sensor Interface 

The program shall interface with sensor hardware to take power, temperature 
and pressure readings for the space station. 

1.2.2 Sensor Checking 

A range of suitable sensor readings shall be established by the computer 
program (default boundaries) or shall be provided by operator chosen input. 
Sensor readings shall be compared with the range of suitable values and an 
alarm generated if a sensor reading is out of bounds. 

1.2.3 Operator Interface 

An interface with a work station shall be provided for operator setting of 
sensor value ranges and for display of alarm messages. 

1.2.4 Alarm Report 

An alarm report shall be generated at the work station operator console if 
sensor checking makes a sensor out of bounds determination. The alarm 
message shall also be recorded in mass storage. 

1.3 SOLAR PANEL ORIENTATION CORRECTION 

1.3.1 Update Orientation 

The program shall receive an angle pair from earth ground stations giving 
the correction for the solar panel orientation. The new solar panel 
orientation shall be calculated from the old orientation. The new orienta- 
tion shall be transmitted to earth. 

1.3.2 Solar Panel Arm Motions 

The program shall calculate the needed solar panel mounting arm motions 
needed to orient the solar panel, given the old orientation and the new 
orientation. The program shall generate control information to two solar 
panel mounting panel motors to reorient the solar panel. 

1.4 COMPUTER PROCESSOR BUILT-IN TEST 

A test suite of Ada instructions shall be run to monitor the fitness of the 
computer processor. The test suite shall exercise the computer processor 
instruction code and memory use. Unexpected results shall be reported at 
the sensor monitoring work station. 
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APPENDIX D 

ACCOUNTING FOR CHARACTERISTICS OF A SOFTWARE ACQUISITION USING COCOMO 

1 INTRODUCTION 

COCOMO utilizes coefficients to account for characteristics of a software 
acquisition. Specifically, the estimation algorithms of Intermediate and 
Detailed COCOMO contain 15 coefficients. Each coefficient is a function of 
a different attribute of the software acquisition being estimated. As 
described in Section 2.3.1 of Chapter VII, coefficients account for the 
characteristics of the software product to be developed, the computer to be 
used, the personnel to do the work, and other project considerations. 

2 VALUES OF COCOMO ATTRIBUTE COEFFICIENTS USED IN INTERMEDIATE COCOMO 

2.1  Estimating Development Costs and Schedule 

When estimating development costs and schedule duration, COCOMO Attribute 
Coefficients are given by the relationship: 

where n     n 

A1  - required software reliability 
A„ - data base size 
A_  - product complexity 
A,  - execution time constraints 
A  - main storage constraint 
Afi - virtual machine volatility 
A  - computer turnaround time 
Afi  - analyst capability 
Aq — applications experience 
A1 n - programmer capability 
A..  - virtual machine experience 
A1^ - programming language experience 
A, ., - use of modern programming practices 
A,, - level of tool support 
A  - schedule constraint 

The set of values possible for each attribute, the meaning of each value, 
and the corresponding coefficient value is given in Table D-l. 

2.2 Estimating Maintenance Costs 

When estimating maintenance costs and schedule duration, the coefficient 
values are selected from Table D-l, except for the coefficients C1, C., and 
C.    These coefficients have unique values for maintenance. The unique 
values are given in Table D-2. 
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TABLE D-2  POSSIBLE RATINGS FOR COCOMO ATTRIBUTE INPUT AND 
RELATED COCOMO COEFFICIENTS UNIQUE TO MAINTENANCE 

Input Permissible Coefficient Product 
Coefficient Attribute 

Required 

Rating Value Size 

Cl 
Very High 1.10 

Software High 0.98 
Reliability Nominal 

Low 
Very Low 

1.00 
1.15 
1.35 

N/A 

C13 
Use of Very High 0.81 2,000 
Modern High 0.90 
Programming Nominal 1.00 
Practices Low 

Very Low 
1.12 
1.25 

Very High 0.77 8,000 
High 0.88 
Nominal 1.14 
Low 1.14 
Very Low 1.30 

Very High 0.74 32,000 
High 0.86 
Nominal 1.00 
Low 1.16 
Very Low 1.35 

C13 
Use of Very High 0.72 123,000 
Modern High 0.85 
Programming Nominal 1.00 
Practices Low 

Very Low 
1.18 
1.40 

Very High 0.70 512,000 
High 0.84 
Nominal 1.00 
Low 1.20 
Very Low 1.45 

c. Schedule Very High 1.00 
Constraint High 1.00 

Nominal 1.00 
Low 1.00 
Very Low 1.00 

N/A 
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3   VALUES OF COCOMO ATTRIBUTE COEFFICIENTS USED IN DETAILED COCOMO 

3.1 Coefficients Variable at the Module Level 

COCOMO coefficients for Detailed COCOMO vary by phase. Four of them also 
typically vary from module to module. Specifically, C. as a function of 
product complexity, C.^ as a function of programming capability, C. as a 
function of virtual machine experience and C. „ as a function of programming 
language experience vary by both phase and module. The estimator selects 
values for them for each specific module from the values given in Table 
D-3. 

3.2 Coefficients Fixed at the Module Level 

With detailed COCOMO certain coefficients vary by phase but are relatively 
fixed from one module to another. These coefficients are shown in Table 
D-4. 
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TABLE D-3  DETAILED COCOMO, ATTRIBUTE COEFFICIENTS 
VARIABLE BY MODULE AND PHASE 

Permissible Phase Number (p) 

C3 Very Low .70 .70 .70 .70 
Low .85 .85 .85 .85 
Nominal 1.00 1.00 1.00 1.00 
High 1.15 1.15 1.15 1.15 
Very High 1.30 1.30 1.30 1.30 
Extra High 1.65 1.65 1.65 1.65 

C10 
Very Low 1.50 1.50 1.50 1.50 
Low 1.00 1.20 1.20 1.20 
Nominal 1.00 1.00 1.00 1.00 
High 1.00 .83 .83 .83 
Very High 1.00 .65 .65 .65 

Cll 
Very Low 1.10 1.10 1.30 1.30 
Low 1.05 1.05 1.15 1.15 
Nominal 1.00 1.00 1.00 1.00 
High .90 .90 .90 .90 

C12 
Very Low 1.02 1.10 1.20 1.20 
Low 1.00 1.05 1.10 1.10 
Nominal 1.00 1.05 1.10 1.10 
High 1.00 .98 .92 .92 

P - 1 for the product desi .gn phase 

P = 2 for the detailed design phase 

P - 3 for the code and unit test phase 

P = 4 for the integration and test phase 
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TABLE D-4  DETAILED COCOMO, ATTRIBUTE COEFFICIENTS 
FIXED BY MODULE AND VARIABLE BY PHASE 

Coefficient 
Permissible 

Rating 
Phase Number (p) 

1&2 3 4 5 

« Cl 
Very Low .80 .80 .80 .80 
Low .90 .90 .90 .90 

% Nominal 1.00 1.00 1.00 1.00 
High 1.10 1.10 1.10 1.30 

V Very High 1.30 1.30 1.30 1.70 

C2 
Low .95 .95 .95 .90 
Nominal 1.00 1.00 1.00 1.00 
High 1.10 1.05 1.05 1.15 
Very High 1.20 1.10 1.10 1.30 

C4 
Nominal 1.00 1.00 1.00 1 . oc 
High 1.10 1.10 1.10 1.1 .-• 
Very High 1.30 1.25 1.25 1.40 
Extra High 1.65 1.55 1.55 1.95 

S Nominal 1.00 1.00 1.00 1.00 
High 1.05 1.05 1.05 1.10 
Very High 1.20 1.15 1.15 1.35 
Extra High 1.55 1.45 1.45 1.85 

C6 
Low .95 .90 .85 .80 
Nominal 1.00 1.00 1.00 1 .00 
High 1.10 1.12 1.15 1.20 
Very High 1.20 1.25 1.30 1.40 

C7 
Low .98 .95 .70 . 90 
Nominal 1.00 1.00 1.00 1.00 
High 1.00 1.00 1.10 1.15 
Very High 1.02 1.05 1 20 1.30 

C8 
Very Low 1.80 1.35 1.35 1. 50 
Low 1.35 1.15 1.15 1.20 
Nominal 1.00 1.00 1.00 1.00 
High .75 .90 .90 .85 
Very High .55 .75 .75 .70 

C9 
Very Low 1.40 1.30 1.25 1 . 2 D 
Low 1.20 1.15 1.10 1.10 
Nominal 1.00 1.00 1.00 1.00 

fc_ High .87 .90 .92 .92 
H Very High .75 .80 .85 .85 
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TABLE D-4  DETAILED COCOMO, ATTRIBUTE COEFFICIENTS 
FIXED BY MODULE AND VARIABLE BY PHASE 

(continued) 

Permissible 
Rating 

Phase Number (v ) 
Coefficient 1&2 3 4 5 4 * 

C13 
Very Low 1.05 1.10 1.25 1.50 

r 

J Low 1.00 1.05 1.10 1.20 
Nominal 1.00 1.00 1.00 1.00 
High 1.00 .95 .90 .83 
Very High 1.00 .90 .80 .65 

C14 Very Low 1.02 1.05 1.35 1.45 
Low 1.00 1.02 1.15 1.20 
Nominal 1.00 1.00 1.00 1.00 
High .90 .95 .90 .85 
Very High .95 .90 .80 .70 

C15 Very Low 1.10 1.25 1.25 1.25 
Low 1.00 1.15 1.15 1.10 
Nominal 1.00 1.00 1.00 1.00 
High 1.10 1.10 1.00 1.00 
Very High 1.15 1.15 1.05 1.05 
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